跳轉到內容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
目錄
移至側邊欄
隱藏
開始
1
二階微分方程
2
求解二階微分方程
切換求解二階微分方程小節
2.1
情況一
2.2
情況二
2.3
情況三
切換目錄
算術課程/微分方程/二階方程
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外觀
移至側邊欄
隱藏
來自華夏公益教科書
<
算術課程
|
微分方程
二階微分方程
[
編輯
|
編輯原始碼
]
二階微分方程的一般形式為
A
d
2
f
(
x
)
d
x
2
+
B
d
f
(
x
)
d
x
+
C
=
0
{\displaystyle A{\frac {d^{2}f(x)}{dx^{2}}}+B{\frac {df(x)}{dx}}+C=0}
可以表示為
d
2
f
(
x
)
d
x
2
+
B
A
d
f
(
x
)
d
x
+
C
A
=
0
{\displaystyle {\frac {d^{2}f(x)}{dx^{2}}}+{\frac {B}{A}}{\frac {df(x)}{dx}}+{\frac {C}{A}}=0}
求解二階微分方程
[
編輯
|
編輯原始碼
]
A
d
2
f
(
x
)
d
x
2
+
B
d
f
(
x
)
d
x
+
C
=
0
{\displaystyle A{\frac {d^{2}f(x)}{dx^{2}}}+B{\frac {df(x)}{dx}}+C=0}
d
2
f
(
x
)
d
x
2
+
B
A
d
f
(
x
)
d
x
+
C
A
=
0
{\displaystyle {\frac {d^{2}f(x)}{dx^{2}}}+{\frac {B}{A}}{\frac {df(x)}{dx}}+{\frac {C}{A}}=0}
s
2
+
B
A
s
+
C
A
=
0
{\displaystyle s^{2}+{\frac {B}{A}}s+{\frac {C}{A}}=0}
s
=
(
−
α
±
α
2
−
β
2
)
x
{\displaystyle s=(-\alpha \pm {\sqrt {\alpha ^{2}-\beta ^{2}}})x}
s
=
(
−
α
±
λ
)
x
{\displaystyle s=(-\alpha \pm \lambda )x}
情況一
[
編輯
|
編輯原始碼
]
λ
=
0
{\displaystyle \lambda =0}
α
2
=
λ
2
{\displaystyle \alpha ^{2}=\lambda ^{2}}
s
=
−
α
x
{\displaystyle s=-\alpha x}
f
(
x
)
=
e
(
−
α
x
)
{\displaystyle f(x)=e^{(}-\alpha x)}
情況二
[
編輯
|
編輯原始碼
]
λ
>
0
{\displaystyle \lambda >0}
α
2
>
λ
2
{\displaystyle \alpha ^{2}>\lambda ^{2}}
s
=
−
α
x
±
λ
x
{\displaystyle s=-\alpha x\pm \lambda x}
f
(
x
)
=
e
(
α
x
)
[
e
(
−
α
x
)
+
e
(
−
α
x
)
]
{\displaystyle f(x)=e^{(}\alpha x)[e^{(}-\alpha x)+e^{(}-\alpha x)]}
f
(
x
)
=
A
e
(
α
x
)
C
o
s
λ
x
{\displaystyle f(x)=Ae^{(}\alpha x)Cos\lambda x}
A
=
1
2
e
(
α
x
)
{\displaystyle A={\frac {1}{2}}e^{(}\alpha x)}
情況 3
[
編輯
|
編輯原始碼
]
λ
<
0
{\displaystyle \lambda <0}
α
2
<
λ
2
{\displaystyle \alpha ^{2}<\lambda ^{2}}
s
=
−
α
x
±
j
λ
x
{\displaystyle s=-\alpha x\pm j\lambda x}
f
(
x
)
=
e
(
−
α
x
)
[
e
(
α
x
)
+
e
(
−
j
α
x
)
]
{\displaystyle f(x)=e^{(}-\alpha x)[e^{(}\alpha x)+e^{(}-j\alpha x)]}
f
(
x
)
=
A
e
(
α
x
)
S
i
n
λ
x
{\displaystyle f(x)=Ae^{(}\alpha x)Sin\lambda x}
A
=
1
2
j
e
(
α
x
)
{\displaystyle A={\frac {1}{2j}}e^{(}\alpha x)}
分類
:
書籍: 算術課程
華夏公益教科書