跳轉到內容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
目錄
移動到側邊欄
隱藏
開始
1
不定積分
2
積分定律
切換目錄
算術課程/數論/積分/不定積分
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外觀
移動到側邊欄
隱藏
來自華夏公益教科書,開放的書籍,為開放的世界
<
算術課程
|
數論
|
積分
不定積分
[
編輯
|
編輯原始碼
]
對函式進行數學運算以找到函式曲線下的總面積。給定一個關於 x 的函式 f(x),則函式 f(x) 的不定積分的符號如下所示:
∫
f
(
x
)
d
x
=
L
i
m
Δ
x
→
0
Σ
Δ
x
[
f
(
x
)
+
f
(
x
+
Δ
x
)
2
]
{\displaystyle \int f(x)dx=Lim_{\Delta x\to 0}\Sigma \Delta x[f(x)+{\frac {f(x+\Delta x)}{2}}]}
結果
∫
f
(
x
)
d
x
=
F
(
x
)
+
C
=
∫
f
(
x
)
d
x
=
f
′
(
x
)
+
C
{\displaystyle \int _{}^{}f(x)\,dx=F(x)+C=\int f(x)dx=f^{'}(x)+C}
積分定律
[
編輯
|
編輯原始碼
]
∫
f
′
(
x
)
f
(
x
)
d
x
=
ln
|
f
(
x
)
|
+
c
{\displaystyle \int {\frac {f^{'}(x)}{f(x)}}{\rm {d}}x=\ln |f(x)|+c}
∫
U
V
=
U
∫
V
−
∫
(
U
′
∫
V
)
{\displaystyle \int {UV}=U\int {V}-\int {\left(U^{'}\int {V}\right)}}
e
x
{\displaystyle e^{x}}
也生成自身,並能接受相同的處理。
∫
e
−
x
sin
x
d
x
=
(
−
e
−
x
)
sin
x
−
∫
(
−
e
−
x
)
cos
x
d
x
{\displaystyle \int {e^{-x}\sin x}~dx=(-e^{-x})\sin x-\int {(-e^{-x})\cos x}~dx}
=
−
e
−
x
sin
x
+
∫
e
−
x
cos
x
d
x
{\displaystyle =-e^{-x}\sin x+\int {e^{-x}\cos x}~dx}
=
−
e
−
x
(
sin
x
+
cos
x
)
−
∫
e
−
x
sin
x
d
x
+
c
{\displaystyle =-e^{-x}(\sin x+\cos x)-\int {e^{-x}\sin x}~dx+c}
現在我們在方程的兩邊都有了我們需要的積分,所以
=
−
1
2
e
−
x
(
sin
x
+
cos
x
)
+
c
{\displaystyle =-{\frac {1}{2}}e^{-x}(\sin x+\cos x)+c}
f
(
x
)
=
m
{\displaystyle f(x)=m}
∫
m
d
x
=
m
x
+
C
{\displaystyle \int mdx=mx+C}
f
(
x
)
=
x
n
{\displaystyle f(x)=x^{n}}
∫
f
(
x
)
d
x
=
1
n
+
1
x
n
+
1
+
c
{\displaystyle \int {f(x)}dx={\frac {1}{n+1}}x^{n+1}+c}
f
(
x
)
=
1
x
{\displaystyle f(x)={\frac {1}{x}}}
∫
1
x
d
x
=
ln
x
{\displaystyle \int {\frac {1}{x}}dx=\ln x}
分類
:
書籍:算術教程
華夏公益教科書