跳轉到內容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
目錄
移動到側邊欄
隱藏
開始
1
電路配置
2
公式
切換公式子部分
2.1
電路的阻抗
2.2
微分方程
2.2.1
電路的自然響應
2.2.2
電路的共振響應
3
摘要
切換目錄
電子學/電子學公式/串聯電路/串聯 RLC
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外觀
移動到側邊欄
隱藏
來自華夏公益教科書
<
電子學
|
電子學公式
|
串聯電路
電路配置
[
編輯
|
編輯原始碼
]
公式
[
編輯
|
編輯原始碼
]
電路的阻抗
[
編輯
|
編輯原始碼
]
電路的總阻抗
Z
=
Z
R
+
Z
L
{\displaystyle Z=Z_{R}+Z_{L}}
Z
=
R
+
j
ω
L
{\displaystyle Z=R+j\omega L}
Z
=
1
R
(
1
+
j
ω
T
)
{\displaystyle Z={\frac {1}{R}}(1+j\omega T)}
T
=
L
R
{\displaystyle T={\frac {L}{R}}}
微分方程
[
編輯
|
編輯原始碼
]
電路在平衡時的微分方程
L
d
i
d
t
+
1
C
∫
i
d
t
+
i
R
=
0
{\displaystyle L{\frac {di}{dt}}+{\frac {1}{C}}\int idt+iR=0}
d
2
i
d
t
2
+
R
L
d
i
d
t
+
1
L
C
=
0
{\displaystyle {\frac {d^{2}i}{dt^{2}}}+{\frac {R}{L}}{\frac {di}{dt}}+{\frac {1}{LC}}=0}
s
2
+
R
L
s
+
1
L
C
=
0
{\displaystyle s^{2}+{\frac {R}{L}}s+{\frac {1}{LC}}=0}
s
=
(
−
α
±
λ
)
t
{\displaystyle s=(-\alpha \pm \lambda )t}
λ
=
α
2
−
β
2
{\displaystyle \lambda ={\sqrt {\alpha ^{2}-\beta ^{2}}}}
α
=
R
2
L
{\displaystyle \alpha ={\frac {R}{2L}}}
β
=
1
L
C
{\displaystyle \beta ={\frac {1}{LC}}}
電路的自然響應
[
編輯
|
編輯原始碼
]
λ
=
0
{\displaystyle \lambda =0}
。
α
2
=
β
2
{\displaystyle \alpha ^{2}=\beta ^{2}}
i
=
e
(
−
α
t
)
{\displaystyle i=e^{(}-\alpha t)}
λ
=
0
{\displaystyle \lambda =0}
。
α
2
=
β
2
{\displaystyle \alpha ^{2}=\beta ^{2}}
i
=
e
(
−
α
t
)
[
e
(
λ
t
)
+
e
(
−
λ
t
)
]
{\displaystyle i=e^{(}-\alpha t)[e^{(}\lambda t)+e^{(}-\lambda t)]}
λ
=
0
{\displaystyle \lambda =0}
。
α
2
=
β
2
{\displaystyle \alpha ^{2}=\beta ^{2}}
i
=
e
(
−
α
t
)
[
e
(
j
λ
t
)
+
e
(
−
j
λ
t
)
]
{\displaystyle i=e^{(}-\alpha t)[e^{(}j\lambda t)+e^{(}-j\lambda t)]}
電路的諧振響應
[
edit
|
edit source
]
Z
L
−
Z
C
=
0
{\displaystyle Z_{L}-Z_{C}=0}
。
Z
L
=
Z
C
{\displaystyle Z_{L}=Z_{C}}
。
ω
L
=
1
ω
C
{\displaystyle \omega L={\frac {1}{\omega C}}}
。
ω
=
1
L
C
{\displaystyle \omega ={\sqrt {\frac {1}{LC}}}}
V
L
+
V
C
=
0
{\displaystyle V_{L}+V_{C}=0}
.
{\displaystyle }
ω
=
0
{\displaystyle \omega =0}
。
ω
=
0
{\displaystyle \omega =0}
總結
[
edit
|
edit source
]
類別
:
書:電子學
華夏公益教科書