跳轉至內容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
目錄
移動到側邊欄
隱藏
開始
1
Z變換性質
2
函式的Z變換
切換目錄
工程手冊/數學/Z變換
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外觀
移動到側邊欄
隱藏
來自Wikibooks,開放世界中的開放書籍
<
工程手冊
|
數學
Z變換性質
[
編輯
|
編輯原始碼
]
時域
Z域
收斂域
符號
x
[
n
]
=
Z
−
1
{
X
(
z
)
}
{\displaystyle x[n]={\mathcal {Z}}^{-1}\{X(z)\}}
X
(
z
)
=
Z
{
x
[
n
]
}
{\displaystyle X(z)={\mathcal {Z}}\{x[n]\}}
ROC:
r
2
<
|
z
|
<
r
1
{\displaystyle r_{2}<|z|<r_{1}\ }
線性
a
1
x
1
[
n
]
+
a
2
x
2
[
n
]
{\displaystyle a_{1}x_{1}[n]+a_{2}x_{2}[n]\ }
a
1
X
1
(
z
)
+
a
2
X
2
(
z
)
{\displaystyle a_{1}X_{1}(z)+a_{2}X_{2}(z)\ }
至少ROC
1
和ROC
2
的交集
時間平移
x
[
n
−
k
]
{\displaystyle x[n-k]\ }
z
−
k
X
(
z
)
{\displaystyle z^{-k}X(z)\ }
ROC,除了
z
=
0
{\displaystyle z=0\ }
如果
k
>
0
{\displaystyle k>0\,}
以及
z
=
∞
{\displaystyle z=\infty }
如果
k
<
0
{\displaystyle k<0\ }
Z域縮放
a
n
x
[
n
]
{\displaystyle a^{n}x[n]\ }
X
(
a
−
1
z
)
{\displaystyle X(a^{-1}z)\ }
|
a
|
r
2
<
|
z
|
<
|
a
|
r
1
{\displaystyle |a|r_{2}<|z|<|a|r_{1}\ }
時間反轉
x
[
−
n
]
{\displaystyle x[-n]\ }
X
(
z
−
1
)
{\displaystyle X(z^{-1})\ }
1
r
2
<
|
z
|
<
1
r
1
{\displaystyle {\frac {1}{r_{2}}}<|z|<{\frac {1}{r_{1}}}\ }
共軛
x
∗
[
n
]
{\displaystyle x^{*}[n]\ }
X
∗
(
z
∗
)
{\displaystyle X^{*}(z^{*})\ }
收斂域
實部
Re
{
x
[
n
]
}
{\displaystyle \operatorname {Re} \{x[n]\}\ }
1
2
[
X
(
z
)
+
X
∗
(
z
∗
)
]
{\displaystyle {\frac {1}{2}}\left[X(z)+X^{*}(z^{*})\right]}
收斂域
虛部
Im
{
x
[
n
]
}
{\displaystyle \operatorname {Im} \{x[n]\}\ }
1
2
j
[
X
(
z
)
−
X
∗
(
z
∗
)
]
{\displaystyle {\frac {1}{2j}}\left[X(z)-X^{*}(z^{*})\right]}
收斂域
微分
n
x
[
n
]
{\displaystyle nx[n]\ }
−
z
d
X
(
z
)
d
z
{\displaystyle -z{\frac {\mathrm {d} X(z)}{\mathrm {d} z}}}
收斂域
卷積
x
1
[
n
]
∗
x
2
[
n
]
{\displaystyle x_{1}[n]*x_{2}[n]\ }
X
1
(
z
)
X
2
(
z
)
{\displaystyle X_{1}(z)X_{2}(z)\ }
至少ROC
1
和ROC
2
的交集
相關
r
x
1
,
x
2
(
l
)
=
x
1
[
l
]
∗
x
2
[
−
l
]
{\displaystyle r_{x_{1},x_{2}}(l)=x_{1}[l]*x_{2}[-l]\ }
R
x
1
,
x
2
(
z
)
=
X
1
(
z
)
X
2
(
z
−
1
)
{\displaystyle R_{x_{1},x_{2}}(z)=X_{1}(z)X_{2}(z^{-1})\ }
至少包含 X
1
(z) 和 X
2
(
z
−
1
{\displaystyle z^{-1}}
) 的收斂域的交集
乘法
x
1
[
n
]
x
2
[
n
]
{\displaystyle x_{1}[n]x_{2}[n]\ }
1
j
2
π
∮
C
X
1
(
v
)
X
2
(
z
v
)
v
−
1
d
v
{\displaystyle {\frac {1}{j2\pi }}\oint _{C}X_{1}(v)X_{2}({\frac {z}{v}})v^{-1}\mathrm {d} v\ }
至少滿足
r
1
l
r
2
l
<
|
z
|
<
r
1
u
r
2
u
{\displaystyle r_{1l}r_{2l}<|z|<r_{1u}r_{2u}\ }
帕塞瓦爾定理 (Parseval's relation)
∑
∞
x
1
[
n
]
x
2
∗
[
n
]
{\displaystyle \sum ^{\infty }x_{1}[n]x_{2}^{*}[n]\ }
1
j
2
π
∮
C
X
1
(
v
)
X
2
∗
(
1
v
∗
)
v
−
1
d
v
{\displaystyle {\frac {1}{j2\pi }}\oint _{C}X_{1}(v)X_{2}^{*}({\frac {1}{v^{*}}})v^{-1}\mathrm {d} v\ }
初始值定理 (Initial value theorem)
x
[
0
]
=
lim
z
→
∞
X
(
z
)
{\displaystyle x[0]=\lim _{z\rightarrow \infty }X(z)\ }
,如果
x
[
n
]
{\displaystyle x[n]\,}
為因果序列
終值定理 (Final value theorem)
x
[
∞
]
=
lim
z
→
1
(
z
−
1
)
X
(
z
)
{\displaystyle x[\infty ]=\lim _{z\rightarrow 1}(z-1)X(z)\ }
,僅當
(
z
−
1
)
X
(
z
)
{\displaystyle (z-1)X(z)\ }
的極點位於單位圓內
函式的 Z 變換
[
編輯
|
編輯原始碼
]
此處
當
n
>=
0
{\displaystyle n>=0}
時,
u
[
n
]
=
1
{\displaystyle u[n]=1}
;當
n
<
0
{\displaystyle n<0}
時,
u
[
n
]
=
0
{\displaystyle u[n]=0}
當
n
=
0
{\displaystyle n=0}
時,
δ
[
n
]
=
1
{\displaystyle \delta [n]=1}
;其他情況,
δ
[
n
]
=
0
{\displaystyle \delta [n]=0}
訊號,
x
[
n
]
{\displaystyle x[n]}
Z變換,
X
(
z
)
{\displaystyle X(z)}
收斂域
1
δ
[
n
]
{\displaystyle \delta [n]\,}
1
{\displaystyle 1\,}
所有
z
{\displaystyle z\,}
2
δ
[
n
−
n
0
]
{\displaystyle \delta [n-n_{0}]\,}
z
−
n
0
{\displaystyle z^{-n_{0}}\,}
z
≠
0
{\displaystyle z\neq 0\,}
3
u
[
n
]
{\displaystyle u[n]\,}
1
1
−
z
−
1
{\displaystyle {\frac {1}{1-z^{-1}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
4
−
u
[
−
n
−
1
]
{\displaystyle -u[-n-1]\,}
1
1
−
z
−
1
{\displaystyle {\frac {1}{1-z^{-1}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
5
n
u
[
n
]
{\displaystyle nu[n]\,}
z
−
1
(
1
−
z
−
1
)
2
{\displaystyle {\frac {z^{-1}}{(1-z^{-1})^{2}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
6
−
n
u
[
−
n
−
1
]
{\displaystyle -nu[-n-1]\,}
z
−
1
(
1
−
z
−
1
)
2
{\displaystyle {\frac {z^{-1}}{(1-z^{-1})^{2}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
7
n
2
u
[
n
]
{\displaystyle n^{2}u[n]\,}
z
−
1
(
1
+
z
−
1
)
(
1
−
z
−
1
)
3
{\displaystyle {\frac {z^{-1}(1+z^{-1})}{(1-z^{-1})^{3}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
8
−
n
2
u
[
−
n
−
1
]
{\displaystyle -n^{2}u[-n-1]\,}
z
−
1
(
1
+
z
−
1
)
(
1
−
z
−
1
)
3
{\displaystyle {\frac {z^{-1}(1+z^{-1})}{(1-z^{-1})^{3}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
9
n
3
u
[
n
]
{\displaystyle n^{3}u[n]\,}
z
−
1
(
1
+
4
z
−
1
+
z
−
2
)
(
1
−
z
−
1
)
4
{\displaystyle {\frac {z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
10
−
n
3
u
[
−
n
−
1
]
{\displaystyle -n^{3}u[-n-1]\,}
z
−
1
(
1
+
4
z
−
1
+
z
−
2
)
(
1
−
z
−
1
)
4
{\displaystyle {\frac {z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
11
a
n
u
[
n
]
{\displaystyle a^{n}u[n]\,}
1
1
−
a
z
−
1
{\displaystyle {\frac {1}{1-az^{-1}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
12
−
a
n
u
[
−
n
−
1
]
{\displaystyle -a^{n}u[-n-1]\,}
1
1
−
a
z
−
1
{\displaystyle {\frac {1}{1-az^{-1}}}}
|
z
|
<
|
a
|
{\displaystyle |z|<|a|\,}
13
n
a
n
u
[
n
]
{\displaystyle na^{n}u[n]\,}
a
z
−
1
(
1
−
a
z
−
1
)
2
{\displaystyle {\frac {az^{-1}}{(1-az^{-1})^{2}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
14
−
n
a
n
u
[
−
n
−
1
]
{\displaystyle -na^{n}u[-n-1]\,}
a
z
−
1
(
1
−
a
z
−
1
)
2
{\displaystyle {\frac {az^{-1}}{(1-az^{-1})^{2}}}}
|
z
|
<
|
a
|
{\displaystyle |z|<|a|\,}
15
n
2
a
n
u
[
n
]
{\displaystyle n^{2}a^{n}u[n]\,}
a
z
−
1
(
1
+
a
z
−
1
)
(
1
−
a
z
−
1
)
3
{\displaystyle {\frac {az^{-1}(1+az^{-1})}{(1-az^{-1})^{3}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
16
−
n
2
a
n
u
[
−
n
−
1
]
{\displaystyle -n^{2}a^{n}u[-n-1]\,}
a
z
−
1
(
1
+
a
z
−
1
)
(
1
−
a
z
−
1
)
3
{\displaystyle {\frac {az^{-1}(1+az^{-1})}{(1-az^{-1})^{3}}}}
|
z
|
<
|
a
|
{\displaystyle |z|<|a|\,}
17
cos
(
ω
0
n
)
u
[
n
]
{\displaystyle \cos(\omega _{0}n)u[n]\,}
1
−
z
−
1
cos
(
ω
0
)
1
−
2
z
−
1
cos
(
ω
0
)
+
z
−
2
{\displaystyle {\frac {1-z^{-1}\cos(\omega _{0})}{1-2z^{-1}\cos(\omega _{0})+z^{-2}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
18
sin
(
ω
0
n
)
u
[
n
]
{\displaystyle \sin(\omega _{0}n)u[n]\,}
z
−
1
sin
(
ω
0
)
1
−
2
z
−
1
cos
(
ω
0
)
+
z
−
2
{\displaystyle {\frac {z^{-1}\sin(\omega _{0})}{1-2z^{-1}\cos(\omega _{0})+z^{-2}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
19
a
n
cos
(
ω
0
n
)
u
[
n
]
{\displaystyle a^{n}\cos(\omega _{0}n)u[n]\,}
1
−
a
z
−
1
cos
(
ω
0
)
1
−
2
a
z
−
1
cos
(
ω
0
)
+
a
2
z
−
2
{\displaystyle {\frac {1-az^{-1}\cos(\omega _{0})}{1-2az^{-1}\cos(\omega _{0})+a^{2}z^{-2}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
20
a
n
sin
(
ω
0
n
)
u
[
n
]
{\displaystyle a^{n}\sin(\omega _{0}n)u[n]\,}
a
z
−
1
sin
(
ω
0
)
1
−
2
a
z
−
1
cos
(
ω
0
)
+
a
2
z
−
2
{\displaystyle {\frac {az^{-1}\sin(\omega _{0})}{1-2az^{-1}\cos(\omega _{0})+a^{2}z^{-2}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
分類
:
書籍:工程手冊
華夏公益教科書