GLSL 程式設計/Unity/光澤紋理

本教程涵蓋了 **部分光澤紋理表面的逐畫素光照**。
它結合了 “紋理球體”部分 和 “平滑鏡面高光”部分 的著色器程式碼,計算使用紋理的 RGB 分量確定漫反射材質顏色的逐畫素光照,以及使用同一紋理的 A 分量確定鏡面反射的強度。如果你沒有閱讀過這些部分,現在是一個很好的機會來閱讀它們。
在 “光照紋理表面”部分 中,漫反射的材質常量由紋理影像的 RGB 分量決定。在這裡,我們擴充套件了這種技術,並透過同一紋理影像的 A(alpha)分量來確定鏡面反射的強度。僅使用一個紋理提供了顯著的效能優勢,特別是因為在某些情況下,RGBA 紋理查詢與 RGB 紋理查詢一樣昂貴。
如果紋理影像的“光澤”(即鏡面反射的強度)編碼在 RGBA 紋理影像的 A(alpha)分量中,我們可以簡單地將鏡面反射的材質常量 與紋理影像的 alpha 分量相乘。 在 “鏡面高光”部分 中介紹,並出現在 Phong 反射模型的鏡面反射項中
如果乘以紋理影像的 alpha 分量,則該項達到最大值(即表面是光澤的),其中 alpha 為 1,並且為 0(即表面根本沒有光澤),其中 alpha 為 0。

著色器程式碼是 “平滑鏡面高光”部分 中的逐畫素光照和 “紋理球體”部分 中的紋理的組合。類似於 “光照紋理表面”部分,紋理顏色 textureColor 的 RGB 分量乘以漫反射材質顏色 _Color。
在左邊的特定紋理影像中,alpha 分量對於水為 0,對於陸地為 1。但是,應該是水是光澤的,而陸地不是。因此,對於這個特定的影像,我們應該將鏡面材質顏色乘以 (1.0 - textureColor.a)。另一方面,通常的光澤貼圖需要乘以 textureColor.a。(注意對著色器程式進行這種改變是多麼容易。)
Shader "GLSL per-pixel lighting with texture" {
Properties {
_MainTex ("RGBA Texture For Material Color", 2D) = "white" {}
_Color ("Diffuse Material Color", Color) = (1,1,1,1)
_SpecColor ("Specular Material Color", Color) = (1,1,1,1)
_Shininess ("Shininess", Float) = 10
}
SubShader {
Pass {
Tags { "LightMode" = "ForwardBase" }
// pass for ambient light and first light source
GLSLPROGRAM
// User-specified properties
uniform sampler2D _MainTex;
uniform vec4 _Color;
uniform vec4 _SpecColor;
uniform float _Shininess;
// The following built-in uniforms (except _LightColor0)
// are also defined in "UnityCG.glslinc",
// i.e. one could #include "UnityCG.glslinc"
uniform vec3 _WorldSpaceCameraPos;
// camera position in world space
uniform mat4 _Object2World; // model matrix
uniform mat4 _World2Object; // inverse model matrix
uniform vec4 _WorldSpaceLightPos0;
// direction to or position of light source
uniform vec4 _LightColor0;
// color of light source (from "Lighting.cginc")
varying vec4 position;
// position of the vertex (and fragment) in world space
varying vec3 varyingNormalDirection;
// surface normal vector in world space
varying vec4 textureCoordinates;
#ifdef VERTEX
void main()
{
mat4 modelMatrix = _Object2World;
mat4 modelMatrixInverse = _World2Object; // unity_Scale.w
// is unnecessary because we normalize vectors
position = modelMatrix * gl_Vertex;
varyingNormalDirection = normalize(vec3(
vec4(gl_Normal, 0.0) * modelMatrixInverse));
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
textureCoordinates = gl_MultiTexCoord0;
}
#endif
#ifdef FRAGMENT
void main()
{
vec3 normalDirection = normalize(varyingNormalDirection);
vec3 viewDirection =
normalize(_WorldSpaceCameraPos - vec3(position));
vec3 lightDirection;
float attenuation;
vec4 textureColor =
texture2D(_MainTex, vec2(textureCoordinates));
if (0.0 == _WorldSpaceLightPos0.w) // directional light?
{
attenuation = 1.0; // no attenuation
lightDirection = normalize(vec3(_WorldSpaceLightPos0));
}
else // point or spot light
{
vec3 vertexToLightSource =
vec3(_WorldSpaceLightPos0 - position);
float distance = length(vertexToLightSource);
attenuation = 1.0 / distance; // linear attenuation
lightDirection = normalize(vertexToLightSource);
}
vec3 ambientLighting = vec3(gl_LightModel.ambient)
* vec3(_Color) * vec3(textureColor);
vec3 diffuseReflection = attenuation * vec3(_LightColor0)
* vec3(_Color) * vec3(textureColor)
* max(0.0, dot(normalDirection, lightDirection));
vec3 specularReflection;
if (dot(normalDirection, lightDirection) < 0.0)
// light source on the wrong side?
{
specularReflection = vec3(0.0, 0.0, 0.0);
// no specular reflection
}
else // light source on the right side
{
specularReflection = attenuation * vec3(_LightColor0)
* vec3(_SpecColor) * (1.0 - textureColor.a)
// for usual gloss maps: "... * textureColor.a"
* pow(max(0.0, dot(
reflect(-lightDirection, normalDirection),
viewDirection)), _Shininess);
}
gl_FragColor = vec4(ambientLighting
+ diffuseReflection + specularReflection, 1.0);
}
#endif
ENDGLSL
}
Pass {
Tags { "LightMode" = "ForwardAdd" }
// pass for additional light sources
Blend One One // additive blending
GLSLPROGRAM
// User-specified properties
uniform sampler2D _MainTex;
uniform vec4 _Color;
uniform vec4 _SpecColor;
uniform float _Shininess;
// The following built-in uniforms (except _LightColor0)
// are also defined in "UnityCG.glslinc",
// i.e. one could #include "UnityCG.glslinc"
uniform vec3 _WorldSpaceCameraPos;
// camera position in world space
uniform mat4 _Object2World; // model matrix
uniform mat4 _World2Object; // inverse model matrix
uniform vec4 _WorldSpaceLightPos0;
// direction to or position of light source
uniform vec4 _LightColor0;
// color of light source (from "Lighting.cginc")
varying vec4 position;
// position of the vertex (and fragment) in world space
varying vec3 varyingNormalDirection;
// surface normal vector in world space
varying vec4 textureCoordinates;
#ifdef VERTEX
void main()
{
mat4 modelMatrix = _Object2World;
mat4 modelMatrixInverse = _World2Object; // unity_Scale.w
// is unnecessary because we normalize vectors
position = modelMatrix * gl_Vertex;
varyingNormalDirection = normalize(vec3(
vec4(gl_Normal, 0.0) * modelMatrixInverse));
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
textureCoordinates = gl_MultiTexCoord0;
}
#endif
#ifdef FRAGMENT
void main()
{
vec3 normalDirection = normalize(varyingNormalDirection);
vec3 viewDirection =
normalize(_WorldSpaceCameraPos - vec3(position));
vec3 lightDirection;
float attenuation;
vec4 textureColor =
texture2D(_MainTex, vec2(textureCoordinates));
if (0.0 == _WorldSpaceLightPos0.w) // directional light?
{
attenuation = 1.0; // no attenuation
lightDirection = normalize(vec3(_WorldSpaceLightPos0));
}
else // point or spot light
{
vec3 vertexToLightSource =
vec3(_WorldSpaceLightPos0 - position);
float distance = length(vertexToLightSource);
attenuation = 1.0 / distance; // linear attenuation
lightDirection = normalize(vertexToLightSource);
}
vec3 diffuseReflection = attenuation * vec3(_LightColor0)
* vec3(_Color) * vec3(textureColor)
* max(0.0, dot(normalDirection, lightDirection));
vec3 specularReflection;
if (dot(normalDirection, lightDirection) < 0.0)
// light source on the wrong side?
{
specularReflection = vec3(0.0, 0.0, 0.0);
// no specular reflection
}
else // light source on the right side
{
specularReflection = attenuation * vec3(_LightColor0)
* vec3(_SpecColor) * (1.0 - textureColor.a)
// for usual gloss maps: "... * textureColor.a"
* pow(max(0.0, dot(
reflect(-lightDirection, normalDirection),
viewDirection)), _Shininess);
}
gl_FragColor =
vec4(diffuseReflection + specularReflection, 1.0);
}
#endif
ENDGLSL
}
}
// The definition of a fallback shader should be commented out
// during development:
// Fallback "Specular"
}
對上面特定紋理影像的這個著色器進行一個有用的修改是,將漫反射材質顏色設定為 alpha 分量為 0 的深藍色。
正如在 “平滑鏡面高光”部分 中所討論的那樣,鏡面高光通常使用每個頂點光照渲染得不好。但是,有時由於效能限制,別無選擇。為了在 “光照紋理表面”部分 的著色器程式碼中包含光澤對映,兩個通道的片段著色器都應該用這段程式碼替換
#ifdef FRAGMENT
void main()
{
vec4 textureColor =
texture2D(_MainTex, vec2(textureCoordinates));
gl_FragColor = vec4(diffuseColor * vec3(textureColor)
+ specularColor * (1.0 - textureColor.a), 1.0);
}
#endif
請注意,通常的光澤貼圖需要乘以 textureColor.a,而不是 (1.0 - textureColor.a)。
恭喜!你完成了關於光澤對映的重要教程。我們已經瞭解了
- 什麼是光澤對映。
- 如何為逐畫素光照實現它。
- 如何為每個頂點光照實現它。
如果你還想了解更多
- 關於逐畫素光照(不使用紋理),你應該閱讀 “平滑鏡面高光”部分.
- 關於紋理,你應該閱讀 “紋理球體”部分.
- 關於使用紋理的每個頂點光照,你應該閱讀 “光照紋理表面”部分.