定義(第二可數) :
令 X {\displaystyle X} 為拓撲空間。 X {\displaystyle X} 被稱為第二可數 當且僅當 X {\displaystyle X} 的拓撲有可數基。
由於可數集的子集是可數的,並且開鄰域生成 N ( x ) {\displaystyle N(x)} ,所以第二可數蘊含第一可數。
命題 () :
第二可數空間是可分的
(在可數選擇公理的條件下。)
證明: 令 ( U n ) n ∈ N {\displaystyle (U_{n})_{n\in \mathbb {N} }} 為 X {\displaystyle X} 拓撲的基,並選擇 x n ∈ U n {\displaystyle x_{n}\in U_{n}} 。那麼 S := { x n | n ∈ N } {\displaystyle S:=\{x_{n}|n\in \mathbb {N} \}} 是可數且稠密的。 ◻ {\displaystyle \Box }
證明: 拓撲空間 X {\displaystyle X} 的任何可數基 ( U n ) n ∈ N {\displaystyle (U_{n})_{n\in \mathbb {N} }} 會在子空間 S {\displaystyle S} 上誘匯出一個可數基 ( S ∩ U n ) n ∈ N {\displaystyle (S\cap U_{n})_{n\in \mathbb {N} }} 。 ◻ {\displaystyle \Box }
命題 () :
連續函式到豪斯多夫空間,其值由稠密子空間唯一確定
Proof: Let x ∈ X {\displaystyle x\in X} be arbitrary, and let V ⊆ Y {\displaystyle V\subseteq Y} be any neighbourhood of G ( x ) {\displaystyle G(x)} . By continuity of G {\displaystyle G} we may find a neighbourhood U {\displaystyle U} of x {\displaystyle x} that is mapped completely into V {\displaystyle V} . Analogously, whenever V ′ {\displaystyle V'} is a neighbourhood of F ( x ) {\displaystyle F(x)} , we find a neighbourhood U ′ {\displaystyle U'} mapping completely into V ′ {\displaystyle V'} . Then U ∩ U ′ {\displaystyle U\cap U'} is mapped completely into V ∩ V ′ {\displaystyle V\cap V'} , so that F ( x ) , G ( x ) ⊆ V ∩ V ′ {\displaystyle F(x),G(x)\subseteq V\cap V'} for any open neighbourhoods V {\displaystyle V} of G ( x ) {\displaystyle G(x)} and V ′ {\displaystyle V'} of F ( x ) {\displaystyle F(x)} . If F ( x ) ≠ G ( x ) {\displaystyle F(x)\neq G(x)} , then V ∩ V ′ = ∅ {\displaystyle V\cap V'=\emptyset } for suitable V , V ′ {\displaystyle V,V'} as above by the Hausdorff condition, a contradiction to G ( x ) ∈ V ∩ V ′ {\displaystyle G(x)\in V\cap V'} . Hence, F ( x ) = G ( x ) {\displaystyle F(x)=G(x)} . Since x {\displaystyle x} was arbitrary, we conclude. ◻ {\displaystyle \Box }