跳轉到內容

一般拓撲/緊開拓撲

來自華夏公益教科書,開放的書籍,開放的世界

定義(緊開拓撲):

為兩個拓撲空間,設 為從 的所有函式的集合。 上的 **緊開拓撲** 被定義為:其子基由集合給出

,

其中 的所有緊子集上取值,而 的所有開子集上取值。

命題(緊集上一致收斂的拓撲至少與連續函式空間上的緊開拓撲一樣細):

為一個拓撲空間,設 為一個一致空間。設 的所有緊子集的集合。 那麼 上由 -收斂的拓撲至少與 上由緊開拓撲誘導的子空間拓撲一樣細。

Proof: We prove that any neighbourhood of an arbitrary in the compact-open topology contains a neighbourhood of in the topology of uniform convergence on compact subsets of . Thus, let be arbitrary. Thus, suppose that , where is compact and non-empty and is open; any neighbourhood of with respect to the compact-open topology will be the finite intersection of sets of this form. Let now be arbitrary. By the definition of the topology induced by a uniform space, the set of those entourages of such that is nonempty. Moreover, for each such , we may choose an entourage of such that . For each such entourage, let be an open neighbourhood of such that . We shall denote the collection of all such by . Then the union of all these , ie. the collection

,

構成 的一個開覆蓋,因為每個 都是非空的,因此包含一個包含 的開集。但 是緊緻的,所以我們可以選擇一個有限子覆蓋 。根據定義,每個 都與之前定義的 之一相同,因此存在一個伴隨 和一個點 使得 。現在定義

.

我們斷言 的一個鄰域,它包含在 內。事實上,設 。如果 是任意的,則存在一個 使得 。從 的定義,我們推斷出 。然而,我們也知道 ,因此 ,由此得出 。由於 是任意的,因此

命題(緊緻開拓撲和緊緻集上的一致收斂在區域性緊緻空間上的連續函式上重合):

是一個區域性緊空間,令 是一個一致空間。令 中所有緊集的集合。那麼由 -收斂和緊開拓撲分別誘導的 上的子空間拓撲是一致的。

Proof: We prove that both topologies generate the same neighbourhood systems. In view of the fact that the topology of uniform convergence on compact sets on spaces of continuous functions is at least as fine as the compact-open topology, it is sufficient to show that any neighbourhood of an arbitrary with respect to the topology of uniform convergence on compact subsets contains a neighbourhood of with respect to the compact-open topology. Hence, let be any entourage of and let be compact, so that represents an arbitrary element of the canonical neighbourhood basis of with respect to the topology of uniform convergence on compact sets. We choose an entourage of such that . Now is locally compact, so that for each point , the collection of compact neighbourhoods of such that is non-empty. The collection of all those we shall denote by . Now the collection of all (where ranges over all of ) is an open cover of , whence we may choose a finite subcover . Since the interior is a subset of its original set, the sets cover . Moreover, by definition, each has an such that . We claim that

包含在 內。事實上,假設 ,令 。令 使得 。由於 ,特別是 。但是 也是,因此 。因此,

,

由於 是任意的,所以.

華夏公益教科書