跳轉到內容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
目錄
移動到側邊欄
隱藏
開始
1
簡介
2
技巧
3
例項
4
恆等式
5
應用
切換目錄
圖論/二項式係數的雜耍
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外觀
移動到側邊欄
隱藏
來自華夏公益教科書,開放的書籍,開放的世界
<
圖論
簡介
[
編輯
|
編輯原始碼
]
熟練掌握二項式係數對於關於圖的組合論證非常有幫助。你應該像熟練運用普通代數方程一樣熟練地運用二項式係數。
技巧
[
編輯
|
編輯原始碼
]
在一般方程中代入特定值,例如在以下方程中仔細選擇 x 和 y:
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
n
−
k
y
k
.
{\displaystyle (x+y)^{n}=\sum _{k=0}^{n}{n \choose k}x^{n-k}y^{k}.}
使用遞迴公式的“大錘”證明。你可能會發現透過帕斯卡三角形的圖“跟蹤”二項式係數很有幫助。
對先前恆等式進行微分以得到新的恆等式。
關於排列和組合的組合論證。
例項
[
編輯
|
編輯原始碼
]
示例:2
n
要得到
∑
k
=
0
n
(
n
k
)
=
2
n
{\displaystyle \sum _{k=0}^{n}{\tbinom {n}{k}}=2^{n}}
在
(
x
+
y
)
n
=
∑
k
=
0
n
(
n
k
)
x
n
−
k
y
k
.
{\displaystyle (x+y)^{n}=\sum _{k=0}^{n}{n \choose k}x^{n-k}y^{k}.}
恆等式
[
編輯
|
編輯原始碼
]
(
n
k
)
=
(
n
n
−
k
)
{\displaystyle {\binom {n}{k}}={\binom {n}{n-k}}}
(
n
k
)
=
n
k
(
n
−
1
k
−
1
)
{\displaystyle {\binom {n}{k}}={\frac {n}{k}}{\binom {n-1}{k-1}}}
(
n
−
1
k
)
−
(
n
−
1
k
−
1
)
=
n
−
2
k
n
(
n
k
)
.
{\displaystyle {\binom {n-1}{k}}-{\binom {n-1}{k-1}}={\frac {n-2k}{n}}{\binom {n}{k}}.}
(
n
k
)
=
(
n
−
1
k
−
1
)
+
(
n
−
1
k
)
{\displaystyle {n \choose k}={n-1 \choose k-1}+{n-1 \choose k}}
∑
k
=
0
n
(
n
k
)
2
=
(
2
n
n
)
.
{\displaystyle \displaystyle \sum _{k=0}^{n}{\tbinom {n}{k}}^{2}={\tbinom {2n}{n}}.}
∑
k
=
0
n
(
n
k
)
(
n
n
−
k
)
=
(
2
n
n
)
.
{\displaystyle \displaystyle \sum _{k=0}^{n}{\tbinom {n}{k}}{\tbinom {n}{n-k}}={\tbinom {2n}{n}}.}
∑
k
=
0
n
k
(
n
k
)
=
n
2
n
−
1
{\displaystyle \sum _{k=0}^{n}k{\tbinom {n}{k}}=n2^{n-1}}
∑
k
=
0
n
k
2
(
n
k
)
=
(
n
+
n
2
)
2
n
−
2
{\displaystyle \sum _{k=0}^{n}k^{2}{\tbinom {n}{k}}=(n+n^{2})2^{n-2}}
∑
m
=
0
n
(
m
j
)
(
n
−
m
k
−
j
)
=
(
n
+
1
k
+
1
)
{\displaystyle \sum _{m=0}^{n}{\tbinom {m}{j}}{\tbinom {n-m}{k-j}}={\tbinom {n+1}{k+1}}}
∑
m
=
0
n
(
m
k
)
=
(
n
+
1
k
+
1
)
.
{\displaystyle \sum _{m=0}^{n}{\tbinom {m}{k}}={\tbinom {n+1}{k+1}}\,.}
∑
k
=
0
⌊
n
2
⌋
(
n
−
k
k
)
=
F
(
n
+
1
)
{\displaystyle \sum _{k=0}^{\lfloor {\frac {n}{2}}\rfloor }{\tbinom {n-k}{k}}=F(n+1)}
其中,
F
(
n
) 表示第
n
個
斐波那契數
。
∑
j
=
k
n
(
j
k
)
=
(
n
+
1
k
+
1
)
{\displaystyle \sum _{j=k}^{n}{\tbinom {j}{k}}={\tbinom {n+1}{k+1}}}
∑
j
=
0
k
(
−
1
)
j
(
n
j
)
=
(
−
1
)
k
(
n
−
1
k
)
{\displaystyle \sum _{j=0}^{k}(-1)^{j}{\tbinom {n}{j}}=(-1)^{k}{\tbinom {n-1}{k}}}
∑
j
=
0
n
(
−
1
)
j
(
n
j
)
=
0
{\displaystyle \sum _{j=0}^{n}(-1)^{j}{\tbinom {n}{j}}=0}
∑
i
=
0
n
i
(
n
i
)
2
=
n
2
(
2
n
n
)
{\displaystyle \sum _{i=0}^{n}{i{\binom {n}{i}}^{2}}={\frac {n}{2}}{\binom {2n}{n}}}
∑
i
=
0
n
i
2
(
n
i
)
2
=
n
2
(
2
n
−
2
n
−
1
)
{\displaystyle \sum _{i=0}^{n}{i^{2}{\binom {n}{i}}^{2}}=n^{2}{\binom {2n-2}{n-1}}}
.
∑
k
=
q
n
(
n
k
)
(
k
q
)
=
2
n
−
q
(
n
q
)
{\displaystyle \sum _{k=q}^{n}{\tbinom {n}{k}}{\tbinom {k}{q}}=2^{n-q}{\tbinom {n}{q}}}
應用
[
編輯
|
編輯原始碼
]
找到排列中特定長度的迴圈的機率。
分類
:
圖書: 圖論
華夏公益教科書