MINC/教程/程式設計06
外觀
繼續學習超立方體:我們將再次使用相同的技巧,為每個體素加一。我們將以略微不同的方式進行:這次我們將獲取並設定每個切片的超立方體,使用更少的記憶體。而且,為了獲得更多 mincy 的好處,我們將使用切片縮放進行輸出。
#include <minc2.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
int main(int argc, char **argv) {
mihandle_t minc_volume, new_volume;
midimhandle_t dimensions[3], *dimensions_new;
double min, max;
int result, i, slice;
unsigned long start[3], count[3];
unsigned int sizes[3];
double *slab;
if (argc != 3) {
fprintf(stderr, "Usage: input.mnc output.mnc\n");
}
/* open the volume - first command line argument */
result = miopen_volume(argv[1], MI2_OPEN_READ, &minc_volume);
/* check for error on opening */
if (result != MI_NOERROR) {
fprintf(stderr, "Error opening input file: %d.\n", result);
return(1);
}
/* get the dimension sizes */
miget_volume_dimensions(minc_volume, MI_DIMCLASS_SPATIAL,
MI_DIMATTR_ALL, MI_DIMORDER_FILE,
3, dimensions);
miget_dimension_sizes(dimensions, 3, sizes);
printf("Volume sizes: %u %u %u\n", sizes[0], sizes[1], sizes[2]);
/* allocate new dimensions */
dimensions_new = malloc(sizeof(midimhandle_t) * 3);
/* copy the dimensions */
for(i=0; i < 3; i++) {
micopy_dimension(dimensions[i], &dimensions_new[i]);
}
此程式碼與上次教程中的程式碼相同。
/* create the new volume */
if (micreate_volume(argv[2], 3, dimensions_new, MI_TYPE_UBYTE,
MI_CLASS_REAL, NULL, &new_volume) != MI_NOERROR) {
fprintf(stderr, "Error creating new volume\n");
return(1);
}
/* indicate that we will be using slice scaling */
miset_slice_scaling_flag(new_volume, TRUE);
/* set valid range */
miset_volume_valid_range(new_volume, 255, 0);
/* create the data for the new volume */
if (micreate_volume_image(new_volume) != MI_NOERROR) {
fprintf(stderr, "Error creating volume data\n");
return(1);
}
這次我們在開始處理實際資料之前建立了體積。我們還使用 miset_slice_scaling_flag 設定切片縮放 - 請注意,這必須在 micreate_volume_image 之前進行。其餘部分與之前相同。
/* now go into a slice loop - get each slice as a hyperslab. *
* First allocate enough memory to hold one slice of data */
slab = malloc(sizeof(double) * sizes[1] * sizes[2]);
/* the start and counts */
start[0] = start[1] = start[2] = 0;
/* always one slice */
count[0] = 1;
count[1] = (unsigned long) sizes[1];
count[2] = (unsigned long) sizes[2];
/* start the loop itself */
for (slice=0; slice < sizes[0]; slice++) {
/* set the slice start */
start[0] = (unsigned long) slice;
if (miget_real_value_hyperslab(minc_volume, MI_TYPE_DOUBLE,
start, count, slab) != MI_NOERROR) {
fprintf(stderr, "Error getting hyperslab for slice %d\n", slice);
return(1);
}
/* set min and max to the first voxel of the slice plus 1
* (since we add one to everything anyway) */
min = slab[0]+1;
max = slab[0]+1;
/* loop over all voxels in slice */
for (i=0; i < sizes[1] * sizes[2]; i++) {
/* increment voxel by 1 */
slab[i] += 1;
/* check if min or max should be changed */
if (slab[i]+1 < min) {
min = slab[i]+1;
}
else if (slab[i]+1 > max) {
max = slab[i]+1;
}
}
/* set the slice scaling */
miset_slice_range(new_volume, start, 3, max, min);
/* put the hyperslab into the new volume */
if (miset_real_value_hyperslab(new_volume, MI_TYPE_DOUBLE,
start, count, slab) != MI_NOERROR) {
fprintf(stderr, "Error setting hyperslab\n");
return(1);
}
}
對資料的迴圈變得更加複雜。我們現在為一個足以容納一個切片的超立方體分配了資料,並且我們對每個切片重用了同一個陣列。然後我們獲取每個切片的超立方體,在跟蹤切片特定的最小值和最大值的同時對體素進行相同的操作,並設定切片範圍。然後我們將修改後的超立方體放入新體積中,並繼續下一個切片。
/* closes the volume and makes sure all data is written to file */
miclose_volume(minc_volume);
miclose_volume(new_volume);
/* free memory */
free(dimensions_new);
free(slab);
return(0);
}
我們以與之前相同的方式結束。
#include <minc2.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <string.h>
int main(int argc, char **argv) {
mihandle_t minc_volume, new_volume;
midimhandle_t dimensions[3], *dimensions_new;
double min, max;
int result, i, slice;
unsigned long start[3], count[3];
unsigned int sizes[3];
double *slab;
if (argc != 3) {
fprintf(stderr, "Usage: input.mnc output.mnc\n");
}
/* open the volume - first command line argument */
result = miopen_volume(argv[1], MI2_OPEN_READ, &minc_volume);
/* check for error on opening */
if (result != MI_NOERROR) {
fprintf(stderr, "Error opening input file: %d.\n", result);
return(1);
}
/* get the dimension sizes */
miget_volume_dimensions(minc_volume, MI_DIMCLASS_SPATIAL,
MI_DIMATTR_ALL, MI_DIMORDER_FILE,
3, dimensions);
miget_dimension_sizes(dimensions, 3, sizes);
printf("Volume sizes: %u %u %u\n", sizes[0], sizes[1], sizes[2]);
/* allocate new dimensions */
dimensions_new = malloc(sizeof(midimhandle_t) * 3);
/* copy the dimensions */
for(i=0; i < 3; i++) {
micopy_dimension(dimensions[i], &dimensions_new[i]);
}
/* create the new volume */
if (micreate_volume(argv[2], 3, dimensions_new, MI_TYPE_UBYTE,
MI_CLASS_REAL, NULL, &new_volume) != MI_NOERROR) {
fprintf(stderr, "Error creating new volume\n");
return(1);
}
/* indicate that we will be using slice scaling */
miset_slice_scaling_flag(new_volume, TRUE);
/* set valid range */
miset_volume_valid_range(new_volume, 255, 0);
/* create the data for the new volume */
if (micreate_volume_image(new_volume) != MI_NOERROR) {
fprintf(stderr, "Error creating volume data\n");
return(1);
}
/* now go into a slice loop - get each slice as a hyperslab. *
* First allocate enough memory to hold one slice of data */
slab = malloc(sizeof(double) * sizes[1] * sizes[2]);
/* the start and counts */
start[0] = start[1] = start[2] = 0;
/* always one slice */
count[0] = 1;
count[1] = (unsigned long) sizes[1];
count[2] = (unsigned long) sizes[2];
/* start the loop itself */
for (slice=0; slice < sizes[0]; slice++) {
/* set the slice start */
start[0] = (unsigned long) slice;
if (miget_real_value_hyperslab(minc_volume, MI_TYPE_DOUBLE,
start, count, slab) != MI_NOERROR) {
fprintf(stderr, "Error getting hyperslab for slice %d\n", slice);
return(1);
}
/* set min and max to the first voxel of the slice plus 1
* (since we add one to everything anyway) */
min = slab[0]+1;
max = slab[0]+1;
/* loop over all voxels in slice */
for (i=0; i < sizes[1] * sizes[2]; i++) {
/* increment voxel by 1 */
slab[i] += 1;
/* check if min or max should be changed */
if (slab[i]+1 < min) {
min = slab[i]+1;
}
else if (slab[i]+1 > max) {
max = slab[i]+1;
}
}
/* set the slice scaling */
miset_slice_range(new_volume, start, 3, max, min);
/* put the hyperslab into the new volume */
if (miset_real_value_hyperslab(new_volume, MI_TYPE_DOUBLE,
start, count, slab) != MI_NOERROR) {
fprintf(stderr, "Error setting hyperslab\n");
return(1);
}
}
/* closes the volume and makes sure all data is written to file */
miclose_volume(minc_volume);
miclose_volume(new_volume);
/* free memory */
free(dimensions_new);
free(slab);
return(0);
}