跳到內容

非技術人員的數學/為什麼要學習分析?

來自華夏公益教科書

指令碼錯誤:沒有這樣的模組“Mathe für Nicht-Freaks/Seite”。

我為什麼要學習實分析?這是一個合理的問題,應該在每個關於實分析的講座和教科書的開頭得到解答。在本章中,我想提出一些理由作為對這個問題的回答。

實分析作為數學的基礎

[編輯 | 編輯原始碼]

實分析是數學中必不可少的講座。許多理論,例如複分析、泛函分析和常微分方程理論,都是基於它的。除此之外,許多其他修改過的實分析概念被應用於數學的其他領域。

因此,當人們想要學習數學時,深入研究實分析是不可避免的。這個理論將是理解其他數學領域的關鍵。無論你對哪個數學領域感興趣,你可能都需要實分析的基礎知識。

如果你需要數學知識作為你學習或研究的工具,也是一樣。無論你用數學做什麼,實分析的知識幾乎肯定會幫助你理解你的數學工具。

實分析作為對自然的描述

[編輯 | 編輯原始碼]

自然科學中的大多數問題都是用實分析所涵蓋的概念來建模的:如何確定和預測運動物體的方位和速度?如何計算帶電體系統的電場?

實分析的應用領域包括簡單的問題,並擴充套件到現代研究領域(如公理量子場論)或生物過程的定量建模。因此,對這些概念有很好的瞭解將有助於你理解自然規律並對它們進行公式化。因此,學習實分析將特別有用——無論你學習還是對自然科學感興趣。

學校的實分析

[編輯 | 編輯原始碼]

分析是學校中已經涵蓋的數學課程中為數不多的課程之一。如果你學習數學教育,你將能夠在教學時使用學習實分析獲得的知識。因此,對這門課程有透徹的瞭解將有助於你向學生解釋數學。

實分析作為精確的數學理論

[編輯 | 編輯原始碼]

與你在學校瞭解的分析相比,我們將以極高的精度寫出數學理論。這將包括我們嚴格證明每個定理,並以精確的方式定義每個術語。例如:最後,你將知道為什麼 xxx 的導數是 xxx 以及導數到底是什麼。同時,我們將證明每個術語以確保你理解為什麼在實分析中引入某些概念。這不僅會加深你對在學校已經學到的分析知識的理解,還會讓你能夠解決實分析中的複雜問題。

實分析作為數學推理的練習

[編輯 | 編輯原始碼]

由於分析已經在學校教授過,因此您已經對這些材料有所瞭解,這帶來了一定的優勢。這讓我們有機會集中精力於數學工作方式,而許多學生剛開始並不熟悉這種方式。實分析非常適合練習精確和準確的推理。

掌握數學工作方式將永遠對你有用——即使你不再需要實分析。數學專業的學生以及其他自然科學專業的學生,特別是在能夠做到這一點的情況下,非常受歡迎。我相信數學思維方式將幫助你在完成任務和專案時受益匪淺。

指令碼錯誤:沒有這樣的模組“Mathe für Nicht-Freaks/Seite”。

華夏公益教科書