兩個集合 A,B 的笛卡爾積,其中包含 |a>,|b> 元素,定義為 A × B = { ( | a > , | b > ) : | a >∈ A ∧ | b >∈ B } {\displaystyle A\times B=\{(|a>,|b>):|a>\in A\wedge |b>\in B\}}
從集合 A 到集合 B 的投影 f 被定義為 AxB 子集 f = { ( | a > , | b > ) ∈ A × B : ∀ | a >∈ A ∃ 1 | b >∈ B } {\displaystyle f=\{(|a>,|b>)\in A\times B:\forall |a>\in A\exists _{1}|b>\in B\}} 並使用符號 f ( | a > ) = | b > {\displaystyle f(|a>)=|b>} .
數域 T 定義為 T = { c ∈ C : ( ∃ c 1 , c 2 ) ( c 1 ≠ c 2 ) ∧ ( ∀ c 1 , c 2 ) ( ∃ c 3 = c 1 + c 2 ∧ ∃ c 4 = c 1 . c 2 ∧ ∃ c 5 = − c 1 ∧ ∃ 0 ≠ c 6 = c 1 − 1 ) } {\displaystyle T=\{c\in \mathbb {C} :(\exists c_{1},c_{2})(c_{1}\neq c_{2})\wedge (\forall c_{1},c_{2})(\exists c_{3}=c_{1}+c_{2}\wedge \exists c_{4}=c_{1}.c_{2}\wedge \exists c_{5}=-c_{1}\wedge \exists 0\neq c_{6}=c_{1}^{-1})\}}
向量空間 V 定義為 V = { ( V , T , f 1 , f 2 ) : ( ∀ | a > , | b >∈ V ) ( f 1 ( | a > , | b > ) = f 1 ( | b > , | a > ) ) ( . . . ) } {\displaystyle \mathbb {V} =\{(V,T,f_{1},f_{2}):(\forall |a>,|b>\in V)(f_{1}(|a>,|b>)=f_{1}(|b>,|a>))(...)\}}
函式 是投影 f : C → C {\displaystyle f:\mathbb {C} \rightarrow \mathbb {C} } ,它滿足 ( ∀ x ∈ D f ) ( ∃ 1 y ∈ H f ) ( f ( x ) = y ) {\displaystyle (\forall x\in D_{f})(\exists _{1}y\in H_{f})(f(x)=y)}
泛函 是一個投影 f : V → C {\displaystyle f:\mathbb {V} \rightarrow \mathbb {C} } ,它滿足 ( ∀ x ∈ D f ) ( ∃ 1 y ∈ H f ) ( f ( x ) = y ) {\displaystyle (\forall x\in D_{f})(\exists _{1}y\in H_{f})(f(x)=y)}
算符 是一個投影 f : V → V {\displaystyle f:\mathbb {V} \rightarrow \mathbb {V} } ,它滿足 ( ∀ x ∈ D f ) ( ∃ 1 y ∈ H f ) ( f ( x ) = y ) {\displaystyle (\forall x\in D_{f})(\exists _{1}y\in H_{f})(f(x)=y)}