Let
be a sequence of n positive numbers. The Stieltjes continued fraction is an expression of the form, see [KK] & also [JT],

or its reciprocal
該函式定義了複平面右半部分到其自身的n對1的有理對映,
![{\displaystyle \beta _{a},1/\beta _{a}:\mathbb {C^{+}} {\xrightarrow[{}]{n\leftrightarrow 1}}\mathbb {C^{+}} ,}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dfc1458c2d45bfeeac4a2bc83393ff6c2b4b3aa3)
因為

- 練習(***)。利用斯蒂爾傑斯連分數的對映性質證明其交錯、簡單且對稱的零點和極點位於原點和虛軸上,並且這些性質和有理性表徵了連分數。
- 練習(**)。證明連分數具有表示形式
,是非負實數,並且連分數由此表徵。
The function
is determined by the pre-image of unity (i.e. n points, counting multiplicities), since

and a complex polynomial is determined by its roots up to a multiplicative constant by the fundamental theorem of algebra.
Let
be the elementary symmetric functions of the set
. That is,
Then, the coefficients
of the continued fraction are the pivots in the Gauss-Jordan elimination algorithm of the following
square Hurwitz matrix:

因此,可以表示為
塊的行列式的單項式比率。
- 練習 (**)。證明
</math>

- 練習 (*)。利用前面的練習證明
