跳轉到內容

二維逆問題/斯蒂爾傑斯連分數

來自Wikibooks,開放世界中的開放書籍
Let  be a sequence of n positive numbers. The Stieltjes continued fraction is an expression of the form, see [KK] & also [JT],
or its reciprocal 

該函式定義了複平面右半部分到其自身的n1的有理對映,

因為

練習(***)。利用斯蒂爾傑斯連分數的對映性質證明其交錯、簡單且對稱的零點和極點位於原點和虛軸上,並且這些性質和有理性表徵了連分數。
練習(**)。證明連分數具有表示形式,是非負實數,並且連分數由此表徵。
The function  is determined by the pre-image of unity (i.e. n points, counting multiplicities), since
and a complex polynomial is determined by its roots up to a multiplicative constant by the fundamental theorem of algebra.
Let  be the elementary symmetric functions of the set . That is,

Then, the coefficients  of the continued fraction are the pivots in the Gauss-Jordan elimination algorithm of the following  square Hurwitz matrix:

因此,可以表示為塊的行列式的單項式比率。

練習 (**)。證明

</math>

練習 (*)。利用前面的練習證明
華夏公益教科書