跳轉到內容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
內容
移動到側邊欄
隱藏
開始
1
練習
切換目錄
運算元代數/第一個 K 群
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外觀
移動到側邊欄
隱藏
來自華夏公益教科書,開放的書籍,開放的世界
<
運算元代數
定義 (K1)
:
練習
[
編輯
|
編輯原始碼
]
給定一個迴圈
γ
:
[
0
,
1
]
→
GL
n
(
C
)
{\displaystyle \gamma :[0,1]\to \operatorname {GL} _{n}(\mathbb {C} )}
,我們將其與它的繞數聯絡起來
1
2
π
i
∫
0
1
tr
(
γ
(
t
)
−
1
γ
′
(
t
)
)
d
t
{\displaystyle {\frac {1}{2\pi i}}\int _{0}^{1}\operatorname {tr} (\gamma (t)^{-1}\gamma '(t))dt}
證明這個數是一個整數,並參考一維情況下的相應結果。
證明如果
γ
:
[
0
,
1
]
→
GL
n
(
C
)
{\displaystyle \gamma :[0,1]\to \operatorname {GL} _{n}(\mathbb {C} )}
和
ρ
:
[
0
,
1
]
→
GL
n
(
C
)
{\displaystyle \rho :[0,1]\to \operatorname {GL} _{n}(\mathbb {C} )}
是迴圈,並且存在一個同倫
H
:
[
0
,
1
]
2
→
GL
n
(
C
)
{\displaystyle H:[0,1]^{2}\to \operatorname {GL} _{n}(\mathbb {C} )}
從
γ
{\displaystyle \gamma }
到
ρ
{\displaystyle \rho }
的迴圈,並且在沿著固定迴圈移動時變化的成分中連續可微,那麼
γ
{\displaystyle \gamma }
和
ρ
{\displaystyle \rho }
的繞數相等。
證明如果
K
1
{\displaystyle K_{1}}
被視為一個群,那麼繞數會誘導一個群同態
K
1
(
C
(
S
1
,
C
)
)
→
Z
{\displaystyle K_{1}({\mathcal {C}}(S^{1},\mathbb {C} ))\to \mathbb {Z} }
.
證明這個群同態是滿射的。
證明矩陣值路徑的繞數等於其逐點行列式的繞數。
類別
:
書籍:運算元代數
華夏公益教科書