跳轉到內容

社會研究方法/定量研究

來自華夏公益教科書,開放的書籍,開放的世界

定量研究和資料分析

[編輯 | 編輯原始碼]

在研究人員進行實驗和/或調查後,他/她所獲得的資訊被稱為定量資料。這種資訊是可衡量的,並側重於數值,與描述性更強的定性資料不同。收集到定量資料後,研究人員會對研究結果進行分析。

定量分析
對觀察結果進行數值表示和處理,以便描述和解釋這些觀察結果所反映的現象。

資料的量化

[編輯 | 編輯原始碼]

研究人員使用編碼過程來分析他們的發現。在進行調查時,一些資料是數值的,而其他資料必須從定性轉換為定量。

開發程式碼類別

[編輯 | 編輯原始碼]
編碼
將原始資料轉換為適合機器處理和分析的標準化形式的過程。

編碼是指將一組資料分配數值,以簡化分析,並可用於量化顯性內容和隱性內容。在調查研究中,顯性內容和隱性內容之間的區別非常重要。
顯性內容是指有形的或具體的表面內容(資料),與隱性內容相區別,隱性內容是指這些資訊背後的潛在含義。
顯性內容的優點是易於測試和可靠,缺點是有效性。隱性內容是交流的潛在含義,與顯性內容相區別。隱性內容的優點是它被設計為完美地挖掘交流的潛在含義,其缺點是可靠性和特異性。

程式碼簿構建

[編輯 | 編輯原始碼]

為了使編碼資料易於理解和管理,需要建立一個程式碼簿。這本書解釋了編碼過程,並充當資料集中定位變數的指南。程式碼簿還描述了每個程式碼的含義。這些程式碼簿有兩個目的,首先,它們是編碼過程的指南。其次,程式碼簿充當研究中定位變數的指南。

資料輸入

[編輯 | 編輯原始碼]

定量編碼的例子

  • 一項調查在 1-9 的範圍內對回覆進行排名,並讓受訪者選擇九個選項中的一個。
  • 其他變數,例如性別或政治傾向,必須分配一個數值才能進行定量分析
    • 例如:男性=1;女性=2 或者 民主黨=1;共和黨=2;無黨派=3
  • 由於年齡已經用數字表示,研究人員可以選擇不為這些資料開發編碼系統。

編碼在分析資料中是必要的,因為必須能夠將原始資料轉換為有意義的資訊。

單變數分析

[編輯 | 編輯原始碼]

一旦資料被正確編碼,它就可以被分析。一種分析型別是單變數資料分析,其中一個變數(例如性別、種族或社會經濟地位)被單獨分析,以便更好地描述。
有許多不同的方法可以分析這些資料,包括

  • 頻率分佈:計算樣本中資料收集的次數。
  • 平均值:表示資料總體趨勢的術語。
    • 均值:資料總和除以資料點數。
    • 中位數:如果資料按降序或升序排列,則是資料中的“中間數”。
    • 眾數:出現頻率最高的資料點。
  • 離散度或方差:衡量資料圍繞中心值(例如均值)的範圍。
  • 標準差:也衡量圍繞均值的離散度;但是以一種樣本的 68% 將落在均值正負一個標準差範圍內的形式。

技術先進的程式(如 Microsoft Excel)能夠從一組資料中計算均值、中位數、眾數、方差和標準差。這是分析一組資料非常方便且簡單的方法。

理解分佈和離散度

[編輯 | 編輯原始碼]
正態分佈圖通常用作圖表來顯示標準差和方差。

如果很大一部分值的緊密聚集在均值附近,則表示標準差低;而如果值在所有可能值的範圍內廣泛分佈,則表示標準差高。簡而言之,低離散度和標準差表明值彼此相當接近,變化量相對較小。

連續變數和離散變數

[編輯 | 編輯原始碼]
  • 連續變數是指其屬性形成穩定進展的變數。
  • 離散變數是指其屬性彼此分離的變數。

因此,連續變數(如高度)可以具有無限個可能的值,而離散變數(如年份)只能具有特定的值(2010 或 2011,但不能為 2010.5)。Microsoft Excel 也可以輕鬆計算這兩個值。

單變數分析可以用圖表或圖形直觀地描述。在構建圖表或圖形時,最好保持簡單,以便更好地理解。

雙變數分析

[編輯 | 編輯原始碼]
雙變數分析
同時分析兩個變數,目的是確定它們之間的經驗關係。

雙變數分析側重於變數之間的關係,而不是組的比較。雙變數分析探討了自變數和因變數之間的統計關聯。它的目的是通常是解釋性的,而不僅僅是描述性的。

構建列聯表

[編輯 | 編輯原始碼]

雙變數分析的結果通常以列聯表的形式呈現,列聯表是為了揭示自變數對因變數的影響而構建的。

列聯表
一種以百分比分佈形式展示變數之間關係的格式

如何構建和解讀雙變量表

  1. 根據自變數的屬性將個案分為不同的組別
  2. 用因變數的屬性描述子組
  3. 透過比較自變數子組在因變數特定屬性上的差異來解讀表格

多元分析簡介

[編輯 | 編輯原始碼]
多元分析
對多個變數之間同時關係的分析。它使用自變數、中介變數和先導變數來檢驗和解釋因變數的變異。
  • 中介變數在時間順序上或作為因果機制位於自變數和因變數之間。
  • 先導變數位於自變數之前。


多元表可以根據更復雜的子組描述建立,遵循與雙變量表類似的框架。這是由於使用了多個自變數,並且因變數依賴於這些自變數來顯示任何關係。

例如參加賓果比賽。假設之前認為老年人通常會參加這種遊戲,我們可以根據年齡將參與者分成幾組。當年齡差異被分解成不同的子組時,年齡差異將成為我們的自變數,並會顯示出與因變數(參加賓果比賽)的關係。

資訊傳播和其他問題

[編輯 | 編輯原始碼]

為了展示資料,通常使用表格而不是條形圖等,因為展示多個自變數會很複雜。這些表格也有助於排除意見,找到真實的事實和資料。
定量資料分析的一個問題是存在偏差的可能性。研究人員傾向於偏愛某個發現是很常見的。為了幫助消除這種偏差,在研究之前制定詳細的假設是有益的。透過記錄可能無法證明你的假設正確的結論,對於研究類似主題的其他研究人員來說,瞭解你的結果是有益的,因為它可以幫助他們進行研究。如果研究過程正確,並且在表格中適當展示,則可以在研究有爭議的主題時收集和展示資料,而不會有任何偏差。

研究技巧

[編輯 | 編輯原始碼]

在進行定量分析時,需要記住一些有用的研究技巧

  • 使用百分比進行比較是一個好主意,併為因變數的每個類別建立這些百分比
  • 應重新編碼變數,以便進行想要進行的比較,並且可以以不同的方式進行這種重新編碼。
  • 選擇一個具有足夠解釋力的自變數,以使其有意義。
華夏公益教科書