(a) 令 f , g {\displaystyle f,g} 為定義在 [ 0 , 1 ] {\displaystyle [0,1]} 上的實值可測函式,並具有以下性質:對於每個 x ∈ [ 0 , 1 ] {\displaystyle x\in [0,1]} , g {\displaystyle g} 在 x {\displaystyle x} 處可微且 g ′ ( x ) = ( f ( x ) ) 2 . {\displaystyle g'(x)=(f(x))^{2}.}
證明 f ∈ L 1 [ 0 , 1 ] {\displaystyle f\in L^{1}[0,1]}
(b) 另外,假設 f {\displaystyle f} 在 [ 0 , 1 ] . {\displaystyle [0,1].} 上有界。證明
2 ∫ 0 1 g ( x ) f 2 ( x ) d x = g 2 ( 1 ) − g 2 ( 0 ) . {\displaystyle 2\int _{0}^{1}g(x)f^{2}(x)\,dx=g^{2}(1)-g^{2}(0).}
令 f ∈ L 1 ( − ∞ , ∞ ) {\displaystyle f\in L^{1}(-\infty ,\infty )\!\,} ,並假設 α > 0 {\displaystyle \alpha >0\!\,} 。設 f n ( x ) = f ( n x ) n α {\displaystyle f_{n}(x)={\frac {f(nx)}{n^{\alpha }}}\!\,} 對於 n = 1 , 2 , … {\displaystyle n=1,2,\ldots \!\,} 。證明對於幾乎所有 x ∈ ( − ∞ , ∞ ) {\displaystyle x\in (-\infty ,\infty )\!\,} ,
lim n → ∞ f n ( x ) = 0 {\displaystyle \lim _{n\rightarrow \infty }f_{n}(x)=0\!\,}
透過變數替換(令 u=nx),我們得到
∫ | f n ( x ) | d x = ∫ | f ( u ) | n α + 1 d u ( ∗ ) {\displaystyle \int |f_{n}(x)|dx=\int {\frac {|f(u)|}{n^{\alpha +1}}}du\quad \quad (*)\!\,}
定義 u n ( x ) = ∑ i = 1 n | f i ( x ) | {\displaystyle u_{n}(x)=\sum _{i=1}^{n}|f_{i}(x)|\!\,} .
那麼, u n {\displaystyle u_{n}\!\,} 是一個非負遞增函式,收斂於 ∑ i = 1 ∞ | f i ( x ) | {\displaystyle \sum _{i=1}^{\infty }|f_{i}(x)|\!\,} .
因此,根據單調收斂定理和 ( ∗ ) {\displaystyle (*)\!\,}
∫ ∑ i = 1 ∞ | f i ( x ) | d x = ∑ i = 1 ∞ ∫ | f i ( x ) | d x = ∑ i = 1 ∞ ∫ | f ( x ) | i α + 1 d x = ( ∫ | f ( x ) | d x ) ( ∑ i = 1 ∞ 1 i α + 1 ) < ∞ {\displaystyle {\begin{aligned}\int \sum _{i=1}^{\infty }|f_{i}(x)|dx&=\sum _{i=1}^{\infty }\int |f_{i}(x)|dx\\&=\sum _{i=1}^{\infty }\int {\frac {|f(x)|}{i^{\alpha +1}}}dx\\&=\left(\int |f(x)|dx\right)\left(\sum _{i=1}^{\infty }{\frac {1}{i^{\alpha +1}}}\right)\\&<\infty \end{aligned}}\!\,}
其中最後一個不等式成立,因為級數收斂 ( α > 0 {\displaystyle \alpha >0\!\,} ) 並且 f ∈ L 1 {\displaystyle f\in L^{1}\!\,}
由於
∫ ∑ i = 1 ∞ | f i ( x ) | d x < ∞ {\displaystyle \int \sum _{i=1}^{\infty }|f_{i}(x)|dx<\infty \!\,} ,
我們幾乎處處有
∑ i = 1 ∞ | f i ( x ) | < ∞ {\displaystyle \sum _{i=1}^{\infty }|f_{i}(x)|<\infty \!\,}
這意味著我們想要的結果
lim i → ∞ f i ( x ) = 0 a.e. {\displaystyle \lim _{i\rightarrow \infty }f_{i}(x)=0\quad {\mbox{a.e.}}\!\,}