基礎代數/比例與比例推理/百分比變化
百分比 - 將一個數字與 100 進行比較的比率
百分比變化 - 數量相對於其原始數量的變化百分比。
百分比變化 =(變化量)/(原始量),其中變化量是新值減去原始值。
百分比增加 - 當值從其原始值增加時,將百分比變化稱為百分比增加
百分比減少 - 當值從其原始值減少時,將百分比變化稱為百分比減少
找到百分比變化是使用變化量與原始量的比率。如果量增加,則百分比變化稱為百分比增加,並將導致正值。如果量減少,則百分比變化稱為百分比減少,並將導致負值。
在找到百分比變化時要問自己的第一個問題是:是增加還是減少?一旦確定了正在處理的哪種型別的變化,就可以計算出該百分比變化是多少。
百分比變化是透過將變化量除以原始量來計算的。變化量是新值減去原始值。記住如何找到百分比變化的一個簡單方法是考慮“no over o”方法。在“no over o”方法中,n 代表新值,o 代表原始值。
以下是使用“no over o”方法的方法。
(新值 - 原始值)除以原始值。
(n-o)/o
A. 求解並描述百分比變化,作為百分比增加或減少。四捨五入到最接近的百分比。
1) 12 美元到 9 美元
新值 = 9 美元
原始值 = 12 美元
(n-o)/o
(9-12)/12 = -3/12 = -1/4 = -0.25
“no over o”為負,這意味著它減少了,所以減少了 25%
2) 19 英寸到 25 英寸
新值 = 25 英寸
原始值 = 19 英寸
(n-o)/o
(25-19)/19 = 6/19 = 0.3158
“no over o”為正,這意味著它增加了,所以大約增加了 32%
B. 求解百分比變化的文字問題
1) 安娜的代數成績從 88 分變為 94 分。她成績的百分比變化是多少?
新值 = 94
原始值 = 88
(n-o)/o
(94-88)/88 = 6/88 = 3/44 = .068 = 6.8%
因此增加了 6.8%
2) 1940 年到 1980 年之間,聯邦預算從 7253 億美元增加到 95 億美元。百分比變化是多少?
新值 = 95 億美元
原始值 = 7253 億美元
(n-o)/o
(9.5-725.3)/725.3 = -715.8/725.3 = -0.986 = -98.6%
因此減少了 98.6%
C. 求解
1) 如果 46 減少 20%,結果是多少?
新值 = x
原始值 = 46
(n-o)/o
(x-46)/46 = -0.20
x-46 = -9.2
x = 36.8
2) 如果 16 增加 30%,結果是多少?
新值 = x
原始值 = 16
(n-o)/o
(x-16)/16 = 0.30
x-16 = 4.8
x = 20.8
[2](用於檢查答案)