本章將使用多點、多路徑、多曲面和多體積等簡單概念,對向量微積分進行直觀的解釋。 標量場不會簡單地被視為函式 f : R 3 → R {\displaystyle f:\mathbb {R} ^{3}\to \mathbb {R} } ,該函式在給定輸入點的情況下返回一個數字,向量場也不會簡單地被視為函式 F : R 3 → R 3 {\displaystyle \mathbf {F} :\mathbb {R} ^{3}\to \mathbb {R} ^{3}} ,該函式在給定輸入點的情況下返回一個向量。
基本結構是多點、多路徑、多曲面和多體積。
點 q 0 {\displaystyle \mathbf {q} _{0}} 是一個任意位置。一個“多點”是指一組點/權重對: Q = { ( q 1 , w 1 ) , ( q 2 , w 2 ) , . . . , ( q k , w k ) } {\displaystyle \mathbf {Q} =\{(\mathbf {q} _{1},w_{1}),(\mathbf {q} _{2},w_{2}),...,(\mathbf {q} _{k},w_{k})\}} ,其中 w i {\displaystyle w_{i}} 是分配給點 q i {\displaystyle \mathbf {q} _{i}} 的“權重”。給定兩個點/權重對 ( q , w 1 ) {\displaystyle (\mathbf {q} ,w_{1})} 和 ( q , w 2 ) {\displaystyle (\mathbf {q} ,w_{2})} 覆蓋了相同的點 q {\displaystyle \mathbf {q} } ,權重加起來得到 ( q , w 1 + w 2 ) {\displaystyle (\mathbf {q} ,w_{1}+w_{2})} ,它代替了 ( q , w 1 ) {\displaystyle (\mathbf {q} ,w_{1})} 和 ( q , w 2 ) {\displaystyle (\mathbf {q} ,w_{2})} 。任何對 ( q , 0 ) {\displaystyle (\mathbf {q} ,0)} 都將被移除。 Q {\displaystyle \mathbf {Q} } 可以包含無限多個點,每個點可以有無限小的權重。
任意一點 q 0 {\displaystyle \mathbf {q} _{0}} 可以用標量場 δ 0 ( q ; q 0 ) = { + ∞ 3 ( q = q 0 ) 0 ( q ≠ q 0 ) {\displaystyle \delta _{0}(\mathbf {q} ;\mathbf {q} _{0})=\left\{{\begin{array}{cc}+\infty ^{3}&(\mathbf {q} =\mathbf {q} _{0})\\0&(\mathbf {q} \neq \mathbf {q} _{0})\end{array}}\right.} 描述。這是以點 q 0 {\displaystyle \mathbf {q} _{0}} 為中心的“狄拉克 delta 函式”。 + ∞ 3 {\displaystyle +\infty ^{3}} 是包裹點 q 0 {\displaystyle \mathbf {q} _{0}} 的無限小體積的倒數。為了進一步解釋這一點,設 ω 0 ( q 0 , v ) {\displaystyle \omega _{0}(\mathbf {q} _{0},v)} 是一個包裹點 q 0 {\displaystyle \mathbf {q} _{0}} 的體積為 v {\displaystyle v} 的微小體積。 δ 0 ( q ; q 0 ) {\displaystyle \delta _{0}(\mathbf {q} ;\mathbf {q} _{0})} 可以用 Δ 0 ( q ; q 0 , v ) = { 1 / v ( q ∈ ω 0 ( q 0 , v ) ) 0 ( q ∉ ω 0 ( q 0 , v ) ) {\displaystyle \Delta _{0}(\mathbf {q} ;\mathbf {q} _{0},v)=\left\{{\begin{array}{cc}1/v&(\mathbf {q} \in \omega _{0}(\mathbf {q} _{0},v))\\0&(\mathbf {q} \notin \omega _{0}(\mathbf {q} _{0},v))\end{array}}\right.} 近似。一個質量為 1 的物體被塞進了 ω 0 ( q 0 , v ) {\displaystyle \omega _{0}(\mathbf {q} _{0},v)} 中,從而產生無限高的密度。由於 δ 0 ( q ; q 0 ) {\displaystyle \delta _{0}(\mathbf {q} ;\mathbf {q} _{0})} 本質上是一個密度函式,它帶有單位 [ length − 3 ] {\displaystyle [{\text{length}}^{-3}]} 。
多點 Q = { ( q 1 , w 1 ) , ( q 2 , w 2 ) , . . . , ( q k , w k ) } {\displaystyle \mathbf {Q} =\{(\mathbf {q} _{1},w_{1}),(\mathbf {q} _{2},w_{2}),...,(\mathbf {q} _{k},w_{k})\}} 可以用標量場 δ 0 ( q ; Q ) = ∑ i = 1 k w i δ 0 ( q ; q i ) {\displaystyle \delta _{0}(\mathbf {q} ;\mathbf {Q} )=\sum _{i=1}^{k}w_{i}\delta _{0}(\mathbf {q} ;\mathbf {q} _{i})} 來描述。如果 Q {\displaystyle \mathbf {Q} } 包含無限多個點,並且每個點具有無窮小的權重,則 δ 0 ( q ; Q ) {\displaystyle \delta _{0}(\mathbf {q} ;\mathbf {Q} )} 是一個密度函式。
在下圖中,左面板中的多點透過對每個單元格的點權重進行平均,轉換為中心面板中的標量場。每個單元格的體積應該無限小。右面板中的多點對應於同一個標量場,並且處於更規範的形式,其中相反權重的點已經抵消。
左邊的多點(一系列加權點)可以用中間的標量場表示。右邊是具有相同標量場的更規範的多點,其中附近符號相反的點已經抵消。
下圖顯示瞭如何生成連續標量場 ρ : R 3 → R {\displaystyle \rho :\mathbb {R} ^{3}\to \mathbb {R} } 作為一系列點的集合。考慮位置 q 0 {\displaystyle \mathbf {q} _{0}} 以及具有體積 v {\displaystyle v} 的無限小體積 ω 0 ( q 0 , v ) {\displaystyle \omega _{0}(\mathbf {q} _{0},v)} 。包含在 ω 0 ( q 0 , v ) {\displaystyle \omega _{0}(\mathbf {q} _{0},v)} 中的點權重總和為 ∭ q ∈ ω 0 ( q 0 , v ) ρ ( q ) d V ≈ v ⋅ ρ ( q 0 ) {\displaystyle \iiint _{\mathbf {q} \in \omega _{0}(\mathbf {q} _{0},v)}\rho (\mathbf {q} )dV\approx v\cdot \rho (\mathbf {q} _{0})} 。然後將該權重 v ⋅ ρ ( q 0 ) {\displaystyle v\cdot \rho (\mathbf {q} _{0})} 分散到散佈在體積 ω 0 ( q 0 , v ) {\displaystyle \omega _{0}(\mathbf {q} _{0},v)} 上的任意多個點。
可以將權重為 1 的單個點“塗抹”到其所在的體積上。將該點分成越來越多的具有分數權重的點。經過無限步後,將有無限多個點填充該體積,並且每個點都具有無窮小的權重。
概括地說,多點由一個標量場表示,該標量場量化了每個點的**密度**,任何量化每個點的**密度**的標量場最好解釋為多點。
A simple path (also called a simple curve) C {\displaystyle C} is an oriented continuous curve that extends from a starting point C ( 0 ) {\displaystyle C(0)} to an ending point C ( 1 ) {\displaystyle C(1)} . Intermediate points are indexed by t ∈ [ 0 , 1 ] {\displaystyle t\in [0,1]} and are denoted by C ( t ) {\displaystyle C(t)} . A simple path should be continuous (no breaks), and may intersect or retrace itself. A "multi-path" is a set of simple-path/weight pairs: C = { ( C 1 , w 1 ) , ( C 2 , w 2 ) , . . . , ( C k , w k ) } {\displaystyle \mathbf {C} =\{(C_{1},w_{1}),(C_{2},w_{2}),...,(C_{k},w_{k})\}} where w i {\displaystyle w_{i}} is the weight that is assigned to path C i {\displaystyle C_{i}} . Given two path/weight pairs ( C , w 1 ) {\displaystyle (C,w_{1})} and ( C , w 2 ) {\displaystyle (C,w_{2})} that cover the same path C {\displaystyle C} , the weights add up to get ( C , w 1 + w 2 ) {\displaystyle (C,w_{1}+w_{2})} which replaces ( C , w 1 ) {\displaystyle (C,w_{1})} and ( C , w 2 ) {\displaystyle (C,w_{2})} . Any pair ( C , 0 ) {\displaystyle (C,0)} is removed. In addition given two path/weight pairs ( C 1 , w ) {\displaystyle (C_{1},w)} and ( C 2 , w ) {\displaystyle (C_{2},w)} with the same weight w {\displaystyle w} and C 1 ( 1 ) = C 2 ( 0 ) {\displaystyle C_{1}(1)=C_{2}(0)} , then C 1 {\displaystyle C_{1}} and C 2 {\displaystyle C_{2}} can be linked end-to-end to get the pair ( C 1 + C 2 , w ) {\displaystyle (C_{1}+C_{2},w)} which replaces ( C 1 , w ) {\displaystyle (C_{1},w)} and ( C 2 , w ) {\displaystyle (C_{2},w)} . Assigning a path a negative weight effectively reverses its orientation: if − C {\displaystyle -C} denotes path C {\displaystyle C} with the opposite orientation, then ( C , − w ) {\displaystyle (C,-w)} is equivalent to ( − C , w ) {\displaystyle (-C,w)} . C {\displaystyle \mathbf {C} } can consist of infinitely many paths, and each path may have an infinitesimal weight.
此影像描繪了簡單路徑的狄拉克δ函式。與點的狄拉克δ函式(它是標量場)不同,路徑的狄拉克δ函式是向量場。
An arbitrary curve C {\displaystyle C} can be described by the vector field δ 1 ( q ; C ) = { ( + ∞ 2 ) n ^ ( q ; C ) ( q ∈ C ) 0 ( q ∉ C ) {\displaystyle \delta _{1}(\mathbf {q} ;C)=\left\{{\begin{array}{cc}(+\infty ^{2}){\hat {\mathbf {n} }}(\mathbf {q} ;C)&(\mathbf {q} \in C)\\\mathbf {0} &(\mathbf {q} \notin C)\end{array}}\right.} . This is the "Dirac delta function" for the curve C {\displaystyle C} . n ^ ( q ; C ) {\displaystyle {\hat {\mathbf {n} }}(\mathbf {q} ;C)} is the unit length tangent vector to path C {\displaystyle C} at point q ∈ C {\displaystyle \mathbf {q} \in C} . n ^ ( q ; C ) = 0 {\displaystyle {\hat {\mathbf {n} }}(\mathbf {q} ;C)=\mathbf {0} } if q ∉ C {\displaystyle \mathbf {q} \notin C} . If there are multiple tangent vectors due to C {\displaystyle C} intersecting itself, then n ^ ( q ; C ) {\displaystyle {\hat {\mathbf {n} }}(\mathbf {q} ;C)} is the sum of these tangent vectors. The + ∞ 2 {\displaystyle +\infty ^{2}} is the inverse of the cross-sectional area of an infinitely thin tube that encloses C {\displaystyle C} . To further explain this, let ω 1 ( C , a ) {\displaystyle \omega _{1}(C,a)} be a thin tube with cross-sectional area a {\displaystyle a} that encloses C {\displaystyle C} . δ 1 ( q ; C ) {\displaystyle \delta _{1}(\mathbf {q} ;C)} can be approximated by Δ 1 ( q ; C , a ) = { ( 1 / a ) n ^ ∗ ( q ; C , a ) ( q ∈ ω 1 ( C , a ) ) 0 ( q ∉ ω 1 ( C , a ) ) {\displaystyle \Delta _{1}(\mathbf {q} ;C,a)=\left\{{\begin{array}{cc}(1/a){\hat {\mathbf {n} }}_{*}(\mathbf {q} ;C,a)&(\mathbf {q} \in \omega _{1}(C,a))\\\mathbf {0} &(\mathbf {q} \notin \omega _{1}(C,a))\end{array}}\right.} . n ^ ∗ ( q ; C , a ) {\displaystyle {\hat {\mathbf {n} }}_{*}(\mathbf {q} ;C,a)} is the generalization of n ^ ( q ; C ) {\displaystyle {\hat {\mathbf {n} }}(\mathbf {q} ;C)} to the tube ω 1 ( C , a ) {\displaystyle \omega _{1}(C,a)} . A path weight of 1 is being crammed into the cross-sectional area of ω 1 ( C , a ) {\displaystyle \omega _{1}(C,a)} yielding an infinitely high path density. Since δ 1 ( q ; C ) {\displaystyle \delta _{1}(\mathbf {q} ;C)} is essentially a density over area, it brings with it the units [ length − 2 ] {\displaystyle [{\text{length}}^{-2}]} .
右側的影像描繪了簡單曲線的狄拉克δ函式。向量場 δ 1 ( q ; C ) {\displaystyle \delta _{1}(\mathbf {q} ;C)} 在包圍路徑的無限薄管以外的任何地方都為 0 {\displaystyle \mathbf {0} } 。在管內,向量平行於路徑,其大小等於橫截面積的倒數。狄拉克δ函式是當管變得無限薄時的極限。
多路徑 C = { ( C 1 , w 1 ) , ( C 2 , w 2 ) , . . . , ( C k , w k ) } {\displaystyle \mathbf {C} =\{(C_{1},w_{1}),(C_{2},w_{2}),...,(C_{k},w_{k})\}} 可以用向量場 δ 1 ( q ; C ) = ∑ i = 1 k w i δ 1 ( q ; C i ) {\displaystyle \delta _{1}(\mathbf {q} ;\mathbf {C} )=\sum _{i=1}^{k}w_{i}\delta _{1}(\mathbf {q} ;C_{i})} 來描述。如果 C {\displaystyle \mathbf {C} } 由無數條路徑組成,每條路徑的權重都無限小,那麼 δ 1 ( q ; C ) {\displaystyle \delta _{1}(\mathbf {q} ;\mathbf {C} )} 是一個流量密度函式。
在下圖中,左面板中的多路徑透過計算每個單元格的總位移並在體積上取平均值來轉換為中心面板中的向量場。每個單元格的體積應該是無限小的。右面板中的多路徑對應於同一個向量場,並且處於更規範的形式,其中各個路徑不相互交叉。
左邊的多路徑(一組加權路徑)可以用中間的向量場表示(在生成向量場時,每條路徑都被近似地透過一條邊的中間進入每個單元格)。右邊是一個更規範的多路徑,具有相同的向量場,其中方向相反的附近路徑段已抵消,並且各個路徑不相互交叉。
概括地說,多路徑由一個向量場表示,該向量場量化了每個點的**路徑/流量密度**,任何量化每個點的**流量密度**的向量場(例如電流密度)最好解釋為多路徑。(流量密度是一個向量,它指向流動的淨方向,並且其長度等於透過垂直於淨流動的表面的單位面積的流量。)
A simple surface σ {\displaystyle \sigma } is an oriented continuous surface. A simple surface may intersect or fold back on itself. A "multi-surface" is a set of simple-surface/weight pairs: S = { ( σ 1 , w 1 ) , ( σ 2 , w 2 ) , . . . , ( σ k , w k ) } {\displaystyle \mathbf {S} =\{(\sigma _{1},w_{1}),(\sigma _{2},w_{2}),...,(\sigma _{k},w_{k})\}} where w i {\displaystyle w_{i}} is the weight that is assigned to surface σ i {\displaystyle \sigma _{i}} . Given two surface/weight pairs ( σ , w 1 ) {\displaystyle (\sigma ,w_{1})} and ( σ , w 2 ) {\displaystyle (\sigma ,w_{2})} that cover the same surface σ {\displaystyle \sigma } , the weights add up to get ( σ , w 1 + w 2 ) {\displaystyle (\sigma ,w_{1}+w_{2})} which replaces ( σ , w 1 ) {\displaystyle (\sigma ,w_{1})} and ( σ , w 2 ) {\displaystyle (\sigma ,w_{2})} . Any pair ( σ , 0 ) {\displaystyle (\sigma ,0)} is removed. In addition given two surface/weight pairs ( σ 1 , w ) {\displaystyle (\sigma _{1},w)} and ( σ 2 , w ) {\displaystyle (\sigma _{2},w)} with the same weight w {\displaystyle w} , then σ 1 {\displaystyle \sigma _{1}} and σ 2 {\displaystyle \sigma _{2}} can be combined to get the pair ( σ 1 + σ 2 , w ) {\displaystyle (\sigma _{1}+\sigma _{2},w)} which replaces ( σ 1 , w ) {\displaystyle (\sigma _{1},w)} and ( σ 2 , w ) {\displaystyle (\sigma _{2},w)} . Assigning a surface a negative weight effectively reverses its orientation: if − σ {\displaystyle -\sigma } denotes surface σ {\displaystyle \sigma } with the opposite orientation, then ( σ , − w ) {\displaystyle (\sigma ,-w)} is equivalent to ( − σ , w ) {\displaystyle (-\sigma ,w)} . S {\displaystyle \mathbf {S} } can consist of infinitely many surfaces, and each surface may have an infinitesimal weight.
An arbitrary surface σ {\displaystyle \sigma } can be described by the vector field δ 2 ( q ; σ ) = { ( + ∞ ) n ^ ( q ; σ ) ( q ∈ σ ) 0 ( q ∉ σ ) {\displaystyle \delta _{2}(\mathbf {q} ;\sigma )=\left\{{\begin{array}{cc}(+\infty ){\hat {\mathbf {n} }}(\mathbf {q} ;\sigma )&(\mathbf {q} \in \sigma )\\\mathbf {0} &(\mathbf {q} \notin \sigma )\end{array}}\right.} . This is the "Dirac delta function" for the surface σ {\displaystyle \sigma } . n ^ ( q ; σ ) {\displaystyle {\hat {\mathbf {n} }}(\mathbf {q} ;\sigma )} is the unit length normal vector to surface σ {\displaystyle \sigma } at point q ∈ σ {\displaystyle \mathbf {q} \in \sigma } . n ^ ( q ; σ ) = 0 {\displaystyle {\hat {\mathbf {n} }}(\mathbf {q} ;\sigma )=\mathbf {0} } if q ∉ σ {\displaystyle \mathbf {q} \notin \sigma } . If there are multiple normal vectors due to σ {\displaystyle \sigma } intersecting itself, then n ^ ( q ; σ ) {\displaystyle {\hat {\mathbf {n} }}(\mathbf {q} ;\sigma )} is the sum of these normal vectors. The + ∞ {\displaystyle +\infty } is the inverse of the thickness of an infinitely thin membrane that encloses σ {\displaystyle \sigma } . To further explain this, let ω 2 ( σ , t ) {\displaystyle \omega _{2}(\sigma ,t)} be a thin membrane with thickness t {\displaystyle t} that encloses σ {\displaystyle \sigma } . δ 2 ( q ; σ ) {\displaystyle \delta _{2}(\mathbf {q} ;\sigma )} can be approximated by Δ 2 ( q ; σ , t ) = { ( 1 / t ) n ^ ∗ ( q ; σ , t ) ( q ∈ ω 2 ( σ , t ) ) 0 ( q ∉ ω 2 ( σ , t ) ) {\displaystyle \Delta _{2}(\mathbf {q} ;\sigma ,t)=\left\{{\begin{array}{cc}(1/t){\hat {\mathbf {n} }}_{*}(\mathbf {q} ;\sigma ,t)&(\mathbf {q} \in \omega _{2}(\sigma ,t))\\\mathbf {0} &(\mathbf {q} \notin \omega _{2}(\sigma ,t))\end{array}}\right.} . n ^ ∗ ( q ; σ , t ) {\displaystyle {\hat {\mathbf {n} }}_{*}(\mathbf {q} ;\sigma ,t)} is the generalization of n ^ ( q ; σ ) {\displaystyle {\hat {\mathbf {n} }}(\mathbf {q} ;\sigma )} to the membrane ω 2 ( σ , t ) {\displaystyle \omega _{2}(\sigma ,t)} . A surface weight of 1 is being sandwiched into the thickness of ω 2 ( σ , t ) {\displaystyle \omega _{2}(\sigma ,t)} yielding an infinitely high surface density. Since δ 2 ( q ; σ ) {\displaystyle \delta _{2}(\mathbf {q} ;\sigma )} is essentially a density over length, it brings with it the units [ length − 1 ] {\displaystyle [{\text{length}}^{-1}]} .
多重曲面 S = { ( σ 1 , w 1 ) , ( σ 2 , w 2 ) , . . . , ( σ k , w k ) } {\displaystyle \mathbf {S} =\{(\sigma _{1},w_{1}),(\sigma _{2},w_{2}),...,(\sigma _{k},w_{k})\}} 可以用向量場 δ 2 ( q ; S ) = ∑ i = 1 k w i δ 2 ( q ; σ i ) {\displaystyle \delta _{2}(\mathbf {q} ;\mathbf {S} )=\sum _{i=1}^{k}w_{i}\delta _{2}(\mathbf {q} ;\sigma _{i})} 來描述。如果 S {\displaystyle \mathbf {S} } 由無數個曲面組成,每個曲面的權重都無限小,那麼 δ 2 ( q ; S ) {\displaystyle \delta _{2}(\mathbf {q} ;\mathbf {S} )} 是一個增益率函式。
在下面的圖片中,左邊的面板中的多重曲面透過計算每個單元格的總曲面並對體積進行平均轉化為中間面板中的向量場。每個單元格的體積應該是無限小的。右面板中的多重曲面對應於相同的向量場,並且處於更規範的形式,其中各個曲面彼此不相交。
左邊的多重曲面(一堆帶權重的曲面)可以用中間的向量場表示(在生成向量場時,每個曲面都被近似為與中間每個正方形的邊緣相交)。右邊是一個更規範的多重曲面,它具有相同的向量場,其中方向相反的相鄰曲面段相互抵消,並且各個曲面不相互交叉。
總之,多重曲面用一個向量場來表示,該向量場量化了每個點的增益率 。為了描述增益率,想象一下,以首選方向穿過曲面會獲得“能量”。增益率是一個向量,它指向能量增加速率最大的方向,並且長度等於單位長度能量增加的最大速率。任何在每個點量化增益率 的向量場(例如力場)最好解釋為多重曲面。
A volume Ω {\displaystyle \Omega } is an arbitrary region of space. A "multi-volume" is a set of volume/weight pairs: U = { ( Ω 1 , w 1 ) , ( Ω 2 , w 2 ) , . . . , ( Ω k , w k ) } {\displaystyle \mathbf {U} =\{(\Omega _{1},w_{1}),(\Omega _{2},w_{2}),...,(\Omega _{k},w_{k})\}} where w i {\displaystyle w_{i}} is the "weight" that is assigned to volume Ω i {\displaystyle \Omega _{i}} . Given two volume/weight pairs ( Ω , w 1 ) {\displaystyle (\Omega ,w_{1})} and ( Ω , w 2 ) {\displaystyle (\Omega ,w_{2})} that cover the same volume Ω {\displaystyle \Omega } , the weights add up to get ( Ω , w 1 + w 2 ) {\displaystyle (\Omega ,w_{1}+w_{2})} which replaces ( Ω , w 1 ) {\displaystyle (\Omega ,w_{1})} and ( Ω , w 2 ) {\displaystyle (\Omega ,w_{2})} . Any pair ( Ω , 0 ) {\displaystyle (\Omega ,0)} is removed. In addition given two volume/weight pairs ( Ω 1 , w ) {\displaystyle (\Omega _{1},w)} and ( Ω 2 , w ) {\displaystyle (\Omega _{2},w)} with the same weight w {\displaystyle w} and Ω 1 ∩ Ω 2 = ∅ {\displaystyle \Omega _{1}\cap \Omega _{2}=\emptyset } , then Ω 1 {\displaystyle \Omega _{1}} and Ω 2 {\displaystyle \Omega _{2}} can be combined to get the pair ( Ω 1 ∪ Ω 2 , w ) {\displaystyle (\Omega _{1}\cup \Omega _{2},w)} which replaces ( Ω 1 , w ) {\displaystyle (\Omega _{1},w)} and ( Ω 2 , w ) {\displaystyle (\Omega _{2},w)} . U {\displaystyle \mathbf {U} } can consist of infinitely many volumes, and each volume may have an infinitesimal weight.
任意體積 Ω {\displaystyle \Omega } 可以用標量場 δ 3 ( q ; Ω ) = { 1 ( q ∈ Ω ) 0 ( q ∉ Ω ) {\displaystyle \delta _{3}(\mathbf {q} ;\Omega )=\left\{{\begin{array}{cc}1&(\mathbf {q} \in \Omega )\\0&(\mathbf {q} \notin \Omega )\end{array}}\right.} 來描述。這實際上是體積的“狄拉克 δ 函式”類似物,本質上是一個指示函式,指示一個位置是否被 Ω {\displaystyle \Omega } 包含,1 表示是,0 表示否。由於 δ 3 ( q ; Ω ) {\displaystyle \delta _{3}(\mathbf {q} ;\Omega )} 只是一個指示函式,它不帶任何單位(它是無量綱的)。
多體積 U = { ( Ω 1 , w 1 ) , ( Ω 2 , w 2 ) , . . . , ( Ω k , w k ) } {\displaystyle \mathbf {U} =\{(\Omega _{1},w_{1}),(\Omega _{2},w_{2}),...,(\Omega _{k},w_{k})\}} 可以用標量場 δ 3 ( q ; U ) = ∑ i = 1 k w i δ 3 ( q ; Ω i ) {\displaystyle \delta _{3}(\mathbf {q} ;\mathbf {U} )=\sum _{i=1}^{k}w_{i}\delta _{3}(\mathbf {q} ;\Omega _{i})} 來描述。如果 U {\displaystyle \mathbf {U} } 包含無限多個體積,每個體積的權重都無限小,那麼 δ 3 ( q ; U ) {\displaystyle \delta _{3}(\mathbf {q} ;\mathbf {U} )} 是一個勢函式。
在下圖中,左側面板中的多體積透過對每個單元格中的體積權重進行平均來轉換為中間面板中的標量場。每個單元格的體積應該是無限小的。右側面板中的多體積對應於相同的標量場,並且處於更規範的形式,其中相反權重的體積相互抵消,而剩餘的體積已經擴散到每個單元格。
左側的多體積(加權體積的集合)可以用中間的標量場表示(在生成標量場時,忽略了每個體積的斜角)。右側是一個具有相同標量場的更規範的多體積,其中相反符號的體積相互抵消,而剩餘的體積被塗抹以填充每個單元格。
總之,多體積用一個標量場來表示,該標量場量化了每個點的勢 ,任何量化每個點的勢 的標量場都可以最好地解釋為多體積。
一個重要的要求是,所有多點、多路徑、多曲面和多體積都不能延伸到無窮遠。所有結構都可以延伸到任意大的範圍,只要這個範圍不是無界的。允許結構延伸到無窮遠會導致後續討論中出現問題。
對於大多數與向量微積分相關的定理,通常不允許路徑延伸到無窮遠。
對於大多數與向量微積分相關的定理,通常不允許曲面延伸到無窮遠。
對於大多數與向量微積分相關的定理,通常不允許體積延伸到無窮遠。
這些部分將描述多點的總權重、多路徑的總位移、多曲面的總面積和多體積的總體積。
給定一個多點 Q = { ( q 1 , w 1 ) , ( q 2 , w 2 ) , . . . , ( q k , w k ) } {\displaystyle \mathbf {Q} =\{(\mathbf {q} _{1},w_{1}),(\mathbf {q} _{2},w_{2}),...,(\mathbf {q} _{k},w_{k})\}} ,總點權重顯然是 ∑ i = 1 k w i {\displaystyle \sum _{i=1}^{k}w_{i}} 。給定一個標量場 ρ {\displaystyle \rho } 表示多點, ρ {\displaystyle \rho } 的總權重是 ∭ q ∈ R 3 ρ ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\rho (\mathbf {q} )dV} 。給定一個簡單點 q 0 {\displaystyle \mathbf {q} _{0}} ,總權重為1,所以 ∭ q ∈ R 3 δ 0 ( q ; q 0 ) d V = 1 {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{0}(\mathbf {q} ;\mathbf {q} _{0})dV=1} 。
兩點之間的位移與連線它們的路徑無關。
給定一個簡單路徑 C {\displaystyle C} ,從點 C ( 0 ) {\displaystyle C(0)} 開始,到點 C ( 1 ) {\displaystyle C(1)} 結束, C {\displaystyle C} 產生的總位移是 ∫ q ∈ C d q = C ( 1 ) − C ( 0 ) {\displaystyle \int _{\mathbf {q} \in C}d\mathbf {q} =C(1)-C(0)} 。如右圖所示,此位移僅取決於端點。
閉合迴路產生的位移是 0 {\displaystyle \mathbf {0} } 。
給定一個多路徑 C = { ( C 1 , w 1 ) , ( C 2 , w 2 ) , . . . , ( C k , w k ) } {\displaystyle \mathbf {C} =\{(C_{1},w_{1}),(C_{2},w_{2}),...,(C_{k},w_{k})\}} , C {\displaystyle \mathbf {C} } 所產生的總位移為 ∑ i = 1 k w i ∫ q ∈ C i d q = ∑ i = 1 k w i ( C i ( 1 ) − C i ( 0 ) ) {\displaystyle \sum _{i=1}^{k}w_{i}\int _{\mathbf {q} \in C_{i}}d\mathbf {q} =\sum _{i=1}^{k}w_{i}(C_{i}(1)-C_{i}(0))} 。
給定一個向量場 J {\displaystyle \mathbf {J} } ,它表示一個多路徑, J {\displaystyle \mathbf {J} } 所產生的總位移為 ∭ q ∈ R 3 J ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {J} (\mathbf {q} )dV} 。由於簡單路徑 C {\displaystyle C} 所產生的位移為 ∫ q ∈ C d q = C ( 1 ) − C ( 0 ) {\displaystyle \int _{\mathbf {q} \in C}d\mathbf {q} =C(1)-C(0)} ,因此 ∭ q ∈ R 3 δ 1 ( q ; C ) d V = ∫ q ∈ C d q = C ( 1 ) − C ( 0 ) {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{1}(\mathbf {q} ;C)dV=\int _{\mathbf {q} \in C}d\mathbf {q} =C(1)-C(0)} 。
路徑積分可以轉換為體積積分,方法是將位移微分 dq 替換為與體積微分 dV 成比例的表示式。如所示,路徑被擴散以填充一個細管。體積積分的被積函式在細管之外的所有點的值為 0。
從 ∫ q ∈ C d q = ∭ q ∈ R 3 δ 1 ( q ; C ) d V {\displaystyle \int _{\mathbf {q} \in C}d\mathbf {q} =\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{1}(\mathbf {q} ;C)dV} 可以觀察到,給定路徑 C {\displaystyle C} 上的路徑積分,微分 d q {\displaystyle d\mathbf {q} } 等於體積積分中的 δ 1 ( q ; C ) d V {\displaystyle \delta _{1}(\mathbf {q} ;C)dV} : ∫ q ∈ C f ( q , d q ) = ∭ q ∈ R 3 f ( q , δ 1 ( q ; C ) d V ) {\displaystyle \int _{\mathbf {q} \in C}f(\mathbf {q} ,d\mathbf {q} )=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}f(\mathbf {q} ,\delta _{1}(\mathbf {q} ;C)dV)} ,前提是函式 f {\displaystyle f} 在第二個引數中是線性的。在右邊的下圖中,位移微分 d q = n ^ ⋅ Δ l {\displaystyle d\mathbf {q} ={\hat {\mathbf {n} }}\cdot \Delta l} 等於體積微分 ( n ^ Δ A ) d V = δ 1 ( q ; C ) d V {\displaystyle \left({\frac {\hat {\mathbf {n} }}{\Delta A}}\right)dV=\delta _{1}(\mathbf {q} ;C)dV} ,透過將路徑擴散到無限薄的橫截面積 Δ A {\displaystyle \Delta A} 上。無限薄管之外的點的被積函式為 0:對於所有點 q ∉ C {\displaystyle \mathbf {q} \notin C} , f ( q , δ 1 ( q ; C ) d V ) = f ( q , 0 ) = 0 {\displaystyle f(\mathbf {q} ,\delta _{1}(\mathbf {q} ;C)dV)=f(\mathbf {q} ,\mathbf {0} )=0} 。
此圖展示了一個面積為“A”的平面,其逆時針邊界由箭頭表示,指向平面外的方向。法向量“n”長度為 1,垂直於該平面,指向與圖示一致的平面外。該平面本身可以用向量“A n”來描述。其長度代表面積,其方向代表方向。
給定一個任意定向曲面 σ {\displaystyle \sigma } ,其“逆時針邊界”,用 ∂ σ {\displaystyle \partial \sigma } 表示,是 σ {\displaystyle \sigma } 的邊界,其方向由以下方式確定:從觀察 σ {\displaystyle \sigma } 的方向看,使其穿過的方向指向觀察者,則邊界 ∂ σ {\displaystyle \partial \sigma } 將 σ {\displaystyle \sigma } 逆時針包裹。
給定一個如右圖所示的平面,該平面可以用“曲面向量”來量化,該向量垂直於該平面(法向量)指向首選方向,其長度等於該平面的面積。在右圖中,一個平面面積為 A {\displaystyle A} ,並且垂直於單位長度法向量 n ^ {\displaystyle {\hat {\mathbf {n} }}} 。該平面的“曲面向量”是 A ⋅ n ^ {\displaystyle A\cdot {\hat {\mathbf {n} }}} 。
給定一個非平面曲面 σ {\displaystyle \sigma } , σ {\displaystyle \sigma } 的總曲面向量是透過將 σ {\displaystyle \sigma } 的每個無窮小部分的曲面向量相加得到的。總曲面向量是 S = ∬ q ∈ σ d S {\displaystyle \mathbf {S} =\iint _{\mathbf {q} \in \sigma }d\mathbf {S} } 。
類似於路徑的總位移只取決於端點的方式,曲面的總曲面向量只取決於其逆時針邊界。這不是直觀的,將在下面使用兩種方法詳細解釋。
顯示了兩個不同的曲面。兩個曲面具有相同的逆時針邊界,因此,每個曲面的“總曲面向量”都相同。類似於路徑上的總位移純粹取決於其端點的方式,曲面的總曲面向量純粹取決於其邊界。
下面顯示了與二維空間中的曲面向量相關的兩張圖片。左邊的圖片顯示了二維空間中的曲面向量。在二維中,曲面被稱為一維曲面,類似於路徑。一維曲面的邊界由兩個點組成。一維曲面段的曲面向量是該段的 90 度旋轉,並且指向曲面的方向。一維曲面的總曲面向量是所有單個分量的曲面向量的總和。對於曲面的每個分量,曲面向量都是穿過該分量的位移的 90 度旋轉,因此總曲面向量是形成曲面邊界點的位移的 90 度旋轉。這證明在二維中,總曲面向量僅取決於一維曲面的邊界。
右側的圖片展示了將二維空間中的 1D 曲面擠壓成三維空間中的 2D “帶”。頂部顯示了一個閉合的“帶”。這個“帶”是一個始終平行於垂直方向的曲面,其邊界形成了兩個垂直偏移的相同迴路。邊界迴路也垂直於垂直方向。帶本身被分割成許多小矩形,這些矩形的高度與帶的高度相同。左下角顯示了從上往下看同一個帶的檢視。可以看出,每個曲面向量的長度與對應矩形段的長度成正比,因為高度都是一致的。右下角,透過將曲面向量繞垂直方向旋轉 90 度,曲面向量現在加起來為 0 {\displaystyle \mathbf {0} } ,因此未旋轉的曲面向量的總和也是 0 {\displaystyle \mathbf {0} } 。
這幅圖描述了在二維空間中,1D 曲面的總曲面向量是兩個端點(1D 曲面的邊界)之間位移的 90 度旋轉,因此它僅僅是端點的函式。在左側面板中,1D 曲面是一系列黑色線段,每個線段的曲面向量用紅色虛線箭頭表示。每個曲面向量都是沿曲面位移的 90 度旋轉。長灰色線是曲面端點之間的淨位移,紅色虛線箭頭是這個淨位移的 90 度旋轉。在右側面板中,粉色箭頭顯示為紅色虛線箭頭向量的總和,因此“總曲面”僅僅是 1D 曲面端點的函式。
這幅圖演示了閉合帶狀曲面的總曲面向量為 0。頂部的圖片顯示了一個帶狀曲面,該曲面是一個閉合帶,其中帶的寬度恆定,寬度始終平行於垂直方向,邊緣始終垂直於垂直方向。曲面被細分為許多小矩形部分,這些部分的曲面向量如圖所示。左下角的圖片顯示了從上往下看同一個曲面的檢視。在右下角的圖片中,所有曲面向量都繞垂直方向逆時針旋轉了 90 度,並且顯然加起來為 0。
閉合帶的總曲面向量為 0 {\displaystyle \mathbf {0} } ,意味著如果在不改變其邊界的情況下向曲面新增浮雕,總曲面向量將被保留。下面的兩個左側圖片給出了透過錘擊浮雕來扭曲曲面內部的例子。浮雕引入的垂直曲面是帶,它們對總曲面向量貢獻了 0 {\displaystyle \mathbf {0} } ,而水平曲面只是被浮雕垂直位移。下面的最右側圖片顯示瞭如果將曲面在無窮小尺度上的“紋理”從“階梯”(水平曲面和垂直曲面的並集)轉換為“光滑斜坡”,反之亦然,總曲面向量是如何保留的。由紅色和綠色平面形成的曲面是一個階梯,而由藍色平面形成的曲面是一個斜坡。從圖片右側的直角三角形可以看出,這兩個曲面的總曲面向量相等。
向曲面新增海拔(這幅圖中是凹陷)或浮雕不會改變總曲面向量。紅色水平曲面顯然是保留的,儘管它們位於不同的海拔高度。綠色垂直曲面在每個層級/海拔高度上加起來為 0。
向曲面新增海拔(這幅圖中是凹陷)或浮雕不會改變總曲面向量。水平曲面顯然是保留的,儘管它們位於不同的海拔高度。綠色垂直曲面在低於紅色下方的曲面時,加起來為它們在紅色上方的初始值,並且加起來為 0。
在這幅圖中,有兩個曲面。第一個曲面是紅色和綠色平面的並集,逆時針邊界用粗黑色線表示。第二個曲面是藍色平面,逆時針邊界用藍色虛線表示。紅色、綠色和藍色平面的曲面向量如圖所示。第一個曲面的總曲面向量是紅色和綠色平面曲面向量的總和,等於藍色平面的曲面向量。這一切都意味著,將傾斜的平面曲面替換為其水平和垂直分量(投影)不會改變傾斜的平面曲面的總曲面向量。
可以使用簡單定向曲線上的總位移來計算特定方向上的淨位移。給定一條簡單定向曲線 C {\displaystyle C} 和一條方向由法向量 n ^ {\displaystyle {\hat {\mathbf {n} }}} 指示的定向直線,沿 C {\displaystyle C} 的總位移 Δ q {\displaystyle \Delta \mathbf {q} } 可以用來計算直線指示方向的淨位移。此位移為 n ^ ⋅ Δ q {\displaystyle {\hat {\mathbf {n} }}\cdot \Delta \mathbf {q} } ,並且僅取決於曲線的端點。
為了便於理解,假設有一個簡單的定向曲面 σ {\displaystyle \sigma } ,其邊界為逆時針方向的 ∂ σ {\displaystyle \partial \sigma } ,並且有一個定向平面,其法向量為 n ^ {\displaystyle {\hat {\mathbf {n} }}} 。我們感興趣的是 σ {\displaystyle \sigma } 垂直投影到該平面上的總的有符號面積。 σ {\displaystyle \sigma } 的一個微小平面的投影的有符號面積,其表面向量為 d S {\displaystyle d\mathbf {S} } 為 n ^ ⋅ d S {\displaystyle {\hat {\mathbf {n} }}\cdot d\mathbf {S} } ,總的有符號面積為 ∬ q ∈ σ n ^ ⋅ d S = n ^ ⋅ ∬ q ∈ σ d S = n ^ ⋅ S {\displaystyle \iint _{\mathbf {q} \in \sigma }{\hat {\mathbf {n} }}\cdot d\mathbf {S} ={\hat {\mathbf {n} }}\cdot \iint _{\mathbf {q} \in \sigma }d\mathbf {S} ={\hat {\mathbf {n} }}\cdot \mathbf {S} } ,其中 S {\displaystyle \mathbf {S} } 是 σ {\displaystyle \sigma } 的總表面向量。
投影到平面上的總的有符號面積 n ^ ⋅ S {\displaystyle {\hat {\mathbf {n} }}\cdot \mathbf {S} } 僅僅是邊界的函式 ∂ σ {\displaystyle \partial \sigma } ,而與 σ {\displaystyle \sigma } 如何填充其邊界 ∂ σ {\displaystyle \partial \sigma } 無關。這比聲稱總表面向量 S {\displaystyle \mathbf {S} } 僅僅是 ∂ σ {\displaystyle \partial \sigma } 的函式更明顯、更清晰:二維空間中由邊界包圍的面積僅僅是該邊界的函式。由於投影面積是有符號的,"上下顛倒"的曲面會投影負面積,並且摺疊和懸垂部分會相互抵消。
由於 n ^ ⋅ S {\displaystyle {\hat {\mathbf {n} }}\cdot \mathbf {S} } 僅是 ∂ σ {\displaystyle \partial \sigma } 的函式,對於所有平面方向 n ^ {\displaystyle {\hat {\mathbf {n} }}} 的選擇都是如此,那麼總表面向量 S {\displaystyle \mathbf {S} } 僅是 ∂ σ {\displaystyle \partial \sigma } 的函式。
給定任意方向的路徑,垂直投影到方向直線上的路徑所覆蓋的總位移與路徑內部點的放置無關。位移僅取決於端點。由於無論選擇哪條直線都是如此,所以定向曲線生成的總三維位移向量純粹是其端點的函式,並且如果內部點移動則不會改變。
定向曲面投影到方向平面的總帶符號面積僅取決於邊界,而與任何內部點無關。如果內部點移動,則“陰影”不會改變。如果曲面變形導致“懸垂”,即一些投影點落在投影邊界之外,例如右側示例,則這些點會與懸垂對面(頂部或底部)的點抵消。上下顛倒的曲面投射負面積,在右側示例中,所有負投影面積都被投影到懸垂頂部的直立曲面上的正面積抵消。
計算平面曲面投影到平面上的帶符號投影面積等同於計算曲面向量投影到垂直於平面的直線上的帶符號投影長度。
閉合曲面生成的總表面向量為 0 {\displaystyle \mathbf {0} } .
給定多曲面 S = { ( σ 1 , w 1 ) , ( σ 2 , w 2 ) , . . . , ( σ k , w k ) } {\displaystyle \mathbf {S} =\{(\sigma _{1},w_{1}),(\sigma _{2},w_{2}),...,(\sigma _{k},w_{k})\}} , S {\displaystyle \mathbf {S} } 生成的總表面向量為 ∑ i = 1 k w i ∬ q ∈ σ i d S {\displaystyle \sum _{i=1}^{k}w_{i}\iint _{\mathbf {q} \in \sigma _{i}}d\mathbf {S} } .
給定一個表示多表面的向量場 F {\displaystyle \mathbf {F} } , F {\displaystyle \mathbf {F} } 生成的總表面向量為 ∭ q ∈ R 3 F ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} (\mathbf {q} )dV} 。由於簡單表面 σ {\displaystyle \sigma } 生成的表面向量為 ∬ q ∈ σ d S {\displaystyle \iint _{\mathbf {q} \in \sigma }d\mathbf {S} } ,因此 ∭ q ∈ R 3 δ 2 ( q ; σ ) d V = ∬ q ∈ σ d S {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{2}(\mathbf {q} ;\sigma )dV=\iint _{\mathbf {q} \in \sigma }d\mathbf {S} } 。一個重要的觀察結果是,給定一個在 σ {\displaystyle \sigma } 上的表面積分,微分 d S {\displaystyle d\mathbf {S} } 在體積積分中等於 δ 2 ( q ; σ ) d V {\displaystyle \delta _{2}(\mathbf {q} ;\sigma )dV} : ∬ q ∈ σ f ( q , d S ) = ∭ q ∈ R 3 f ( q , δ 2 ( q ; σ ) d V ) {\displaystyle \iint _{\mathbf {q} \in \sigma }f(\mathbf {q} ,d\mathbf {S} )=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}f(\mathbf {q} ,\delta _{2}(\mathbf {q} ;\sigma )dV)} ,前提是函式 f {\displaystyle f} 對第二個引數是線性的。
考慮一個多卷的 U = { ( Ω 1 , w 1 ) , ( Ω 2 , w 2 ) , . . . , ( Ω k , w k ) } {\displaystyle \mathbf {U} =\{(\Omega _{1},w_{1}),(\Omega _{2},w_{2}),...,(\Omega _{k},w_{k})\}} ,其中 Ω 1 , Ω 2 , . . . , Ω k {\displaystyle \Omega _{1},\Omega _{2},...,\Omega _{k}} 的體積分別為 V 1 , V 2 , . . . , V k {\displaystyle V_{1},V_{2},...,V_{k}} ,那麼 U {\displaystyle \mathbf {U} } 的總體積為 ∑ i = 1 k w i V i {\displaystyle \sum _{i=1}^{k}w_{i}V_{i}} 。每個體積 V i {\displaystyle V_{i}} 可以透過 V i = ∭ q ∈ Ω i d V = ∭ q ∈ R 3 δ 3 ( q ; Ω i ) d V {\displaystyle V_{i}=\iiint _{\mathbf {q} \in \Omega _{i}}dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{3}(\mathbf {q} ;\Omega _{i})dV} 計算。 U {\displaystyle \mathbf {U} } 的總體積為 V = ∑ i = 1 k w i V i = ∑ i = 1 k w i ∭ q ∈ Ω i d V = ∑ i = 1 k w i ∭ q ∈ R 3 δ 3 ( q ; Ω i ) d V {\displaystyle V=\sum _{i=1}^{k}w_{i}V_{i}=\sum _{i=1}^{k}w_{i}\iiint _{\mathbf {q} \in \Omega _{i}}dV=\sum _{i=1}^{k}w_{i}\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{3}(\mathbf {q} ;\Omega _{i})dV} = ∭ q ∈ R 3 ( ∑ i = 1 k w i δ 3 ( q ; Ω i ) ) d V = ∭ q ∈ R 3 δ 3 ( q ; U ) d V {\displaystyle =\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\left(\sum _{i=1}^{k}w_{i}\delta _{3}(\mathbf {q} ;\Omega _{i})\right)dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{3}(\mathbf {q} ;\mathbf {U} )dV} .
如果一個多體積 U {\displaystyle \mathbf {U} } 可以用標量場 U {\displaystyle U} 表示,則 U {\displaystyle \mathbf {U} } 的體積是 ∭ q ∈ R 3 U ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}U(\mathbf {q} )dV} .
給定任意體積 Ω {\displaystyle \Omega } ,在 Ω {\displaystyle \Omega } 上的體積積分可以轉換為在 R 3 {\displaystyle \mathbb {R} ^{3}} 上的體積積分,方法是將微分 d V {\displaystyle dV} 替換為 δ 3 ( q ; Ω ) d V {\displaystyle \delta _{3}(\mathbf {q} ;\Omega )dV}
∭ q ∈ Ω f ( q , d V ) = ∭ q ∈ R 3 f ( q , δ 3 ( q ; Ω ) d V ) {\displaystyle \iiint _{\mathbf {q} \in \Omega }f(\mathbf {q} ,dV)=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}f(\mathbf {q} ,\delta _{3}(\mathbf {q} ;\Omega )dV)} 假設 f {\displaystyle f} 對第二個引數是線性的。
由標量場 ρ 1 {\displaystyle \rho _{1}} 和 ρ 2 {\displaystyle \rho _{2}} 表示的兩個多點的並集就是 ρ 1 + ρ 2 {\displaystyle \rho _{1}+\rho _{2}} ,對於兩個多路徑的並集、兩個多表面的並集和兩個多體積的並集也是如此。但是,兩個不同型別的結構的並集,例如一個多點與一個多路徑的並集,是被禁止的。
並集
結構
多點 ρ 2 {\displaystyle \rho _{2}}
多路徑 J 2 {\displaystyle \mathbf {J} _{2}}
多表面 F 2 {\displaystyle \mathbf {F} _{2}}
多體積 U 2 {\displaystyle U_{2}}
多點 ρ 1 {\displaystyle \rho _{1}}
多點 ρ 1 + ρ 2 {\displaystyle \rho _{1}+\rho _{2}}
n/a
n/a
n/a
多路徑 J 1 {\displaystyle \mathbf {J} _{1}}
n/a
多路徑 J 1 + J 2 {\displaystyle \mathbf {J} _{1}+\mathbf {J} _{2}}
n/a
n/a
多表面 F 1 {\displaystyle \mathbf {F} _{1}}
n/a
n/a
多表面 F 1 + F 2 {\displaystyle \mathbf {F} _{1}+\mathbf {F} _{2}}
n/a
多體積 U 1 {\displaystyle U_{1}}
n/a
n/a
n/a
多體積 U 1 + U 2 {\displaystyle U_{1}+U_{2}}
另一方面,交集則更為複雜,可能發生在不同型別的結構之間。
當一個點 q {\displaystyle \mathbf {q} } ,其權重為 w 1 {\displaystyle w_{1}} ,與一個權重為 w 2 {\displaystyle w_{2}} 的體積 Ω {\displaystyle \Omega } 相交,那麼交集就是點 q {\displaystyle \mathbf {q} } ,其權重為 w 1 w 2 {\displaystyle w_{1}w_{2}} 。給定一個多點和一個多體積,交集是每個簡單點與每個簡單體積的成對交集的總和。下圖給出了多點與多體積交集的一個例子。
左圖顯示了一個多點和一個多體積。右圖顯示了多點和多體積之間的交集,它本身就是一個多點。注意,與權重為 -1 的體積相交的點,其權重被翻轉為負值。
給定一個標量場為 ρ {\displaystyle \rho } 的多點,和一個標量場為 U {\displaystyle U} 的多體積,那麼交集是一個標量場為 ρ U {\displaystyle \rho U} 的多點。
多點 ρ {\displaystyle \rho } 與多體積 U {\displaystyle U} 之間的總交集為 ∭ q ∈ R 3 ρ ( q ) U ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\rho (\mathbf {q} )U(\mathbf {q} )dV} .
如果 ρ {\displaystyle \rho } 表示一個簡單的點 q 0 {\displaystyle \mathbf {q} _{0}} ,則總交集為 ∭ q ∈ R 3 δ 0 ( q ; q 0 ) U ( q ) d V = U ( q 0 ) {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{0}(\mathbf {q} ;\mathbf {q} _{0})U(\mathbf {q} )dV=U(\mathbf {q} _{0})} .
如果 U {\displaystyle U} 表示一個簡單的體積 Ω {\displaystyle \Omega } ,則總交集為 ∭ q ∈ R 3 ρ ( q ) δ 3 ( q ; Ω ) d V = ∭ q ∈ Ω ρ ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\rho (\mathbf {q} )\delta _{3}(\mathbf {q} ;\Omega )dV=\iiint _{\mathbf {q} \in \Omega }\rho (\mathbf {q} )dV} .
當一條路徑 C {\displaystyle C} 權重為 w 1 {\displaystyle w_{1}} 與一個權重為 w 2 {\displaystyle w_{2}} 的表面 σ {\displaystyle \sigma } 相交於點 q {\displaystyle \mathbf {q} } ,則交點為 q {\displaystyle \mathbf {q} } ,權重為 ± w 1 w 2 {\displaystyle \pm w_{1}w_{2}} 。當 C {\displaystyle C} 沿 σ {\displaystyle \sigma } 的方向穿過 σ {\displaystyle \sigma } 時,權重為 + w 1 w 2 {\displaystyle +w_{1}w_{2}} 。當 C {\displaystyle C} 沿與 σ {\displaystyle \sigma } 相反的方向穿過 σ {\displaystyle \sigma } 時,權重為 − w 1 w 2 {\displaystyle -w_{1}w_{2}} 。給定多路徑和多表面,交點是每條簡單路徑與每條簡單表面之間的逐對交點的總和。下面的圖片給出了多路徑與多表面交點的示例。
二維影像顯示多路徑(深藍色虛線曲線)與多表面(深紅色實線曲線)的交點。正交點(紅色圓圈)發生在路徑沿優選方向與表面相交時。負交點(青綠色圓圈)發生在路徑沿相反方向與表面相交時。交點實際上是一個多點。
三維影像顯示簡單路徑(紅色曲線)與簡單表面(綠色表面,逆時針邊界突出顯示)的交點。正交點用紅色“+”符號表示,負交點用藍色“−”符號表示。
多路徑(以藍色管狀顯示)與多表面(以紅色板層顯示)之間的交點。向量 F 是透過藍色管狀的流動密度。向量 G 是紅色板層中的表面密度。綠色平行四邊形是交點體積的二維投影。隨著角度 theta 的增大,交點變得更加稀疏,因此交點密度是 F 和 G 的點積。
在上面的影像的最右邊,多路徑用一個向量場表示,該向量場在藍色管內值為 F {\displaystyle \mathbf {F} } ,在其他地方為 0 {\displaystyle \mathbf {0} } 。多曲面用一個向量場表示,該向量場在紅色薄片中值為 G {\displaystyle \mathbf {G} } ,在其他地方為 0 {\displaystyle \mathbf {0} } 。藍色管內的路徑總權重為 | F | Δ A {\displaystyle |\mathbf {F} |\Delta A} 。紅色薄片內的曲面總權重為 | G | Δ t {\displaystyle |\mathbf {G} |\Delta t} 。所有交點處的總權重為 ( | F | Δ A ) ( | G | Δ t ) = | F | | G | Δ A Δ t {\displaystyle (|\mathbf {F} |\Delta A)(|\mathbf {G} |\Delta t)=|\mathbf {F} ||\mathbf {G} |\Delta A\Delta t} 。交點均勻分佈的體積為 Δ A Δ t / cos θ {\displaystyle \Delta A\Delta t/\cos \theta } 。交點密度為 | F | | G | Δ A Δ t Δ A Δ t / cos θ = | F | | G | cos θ = F ⋅ G {\displaystyle {\frac {|\mathbf {F} ||\mathbf {G} |\Delta A\Delta t}{\Delta A\Delta t/\cos \theta }}=|\mathbf {F} ||\mathbf {G} |\cos \theta =\mathbf {F} \cdot \mathbf {G} } 。
給定一個具有向量場 J {\displaystyle \mathbf {J} } 的多路徑和一個具有向量場 F {\displaystyle \mathbf {F} } 的多曲面,則交點是一個具有標量場 J ⋅ F {\displaystyle \mathbf {J} \cdot \mathbf {F} } 的多點。
多路徑 J {\displaystyle \mathbf {J} } 與多曲面 F {\displaystyle \mathbf {F} } 的總交集為 ∭ q ∈ R 3 ( J ( q ) ⋅ F ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\mathbf {J} (\mathbf {q} )\cdot \mathbf {F} (\mathbf {q} ))dV} .
如果 J {\displaystyle \mathbf {J} } 是一個簡單路徑 C {\displaystyle C} ,則總交集為 ∭ q ∈ R 3 ( δ 1 ( q ; C ) ⋅ F ( q ) ) d V = ∫ q ∈ C F ( q ) ⋅ d q {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\delta _{1}(\mathbf {q} ;C)\cdot \mathbf {F} (\mathbf {q} ))dV=\int _{\mathbf {q} \in C}\mathbf {F} (\mathbf {q} )\cdot d\mathbf {q} } .
如果 F {\displaystyle \mathbf {F} } 是一個簡單曲面 σ {\displaystyle \sigma } ,則總交集為 ∭ q ∈ R 3 ( J ( q ) ⋅ δ 2 ( q ; σ ) ) d V = ∬ q ∈ σ J ( q ) ⋅ d S {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\mathbf {J} (\mathbf {q} )\cdot \delta _{2}(\mathbf {q} ;\sigma ))dV=\iint _{\mathbf {q} \in \sigma }\mathbf {J} (\mathbf {q} )\cdot d\mathbf {S} } .
當一條帶權重 w 1 {\displaystyle w_{1}} 的路徑 C {\displaystyle C} 與帶權重 w 2 {\displaystyle w_{2}} 的體積 Ω {\displaystyle \Omega } 相交,則交點為一條帶權重 w 1 w 2 {\displaystyle w_{1}w_{2}} 的路徑 C ∩ Ω {\displaystyle C\cap \Omega } 。給定多路徑和多體積,它們的交點是每條簡單路徑與每個簡單體積之間兩兩交點的總和。下圖給出了一個多路徑與多體積相交的例子。
左側面板描繪了多路徑和多體積。右側面板描繪了多路徑和多體積之間的交點,它本身也是一個多路徑。請注意,路徑的方向在負權重體積中反轉。此外,位於中間權重為 2 的體積區域內的路徑段的權重為 2,如較粗的線條所示。
給定一個具有向量場 J {\displaystyle \mathbf {J} } 的多路徑,以及一個具有標量場 U {\displaystyle U} 的多體積,則它們的交點為一個具有向量場 J U {\displaystyle \mathbf {J} U} 的多路徑。
多路徑 J {\displaystyle \mathbf {J} } 與多體積 U {\displaystyle U} 之間的總交點為 ∭ q ∈ R 3 J ( q ) U ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {J} (\mathbf {q} )U(\mathbf {q} )dV} 。
如果 J {\displaystyle \mathbf {J} } 表示一條簡單路徑 C {\displaystyle C} ,則總交點為 ∭ q ∈ R 3 δ 1 ( q ; C ) U ( q ) d V = ∫ q ∈ C U ( q ) d q {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{1}(\mathbf {q} ;C)U(\mathbf {q} )dV=\int _{\mathbf {q} \in C}U(\mathbf {q} )d\mathbf {q} } 。
如果 U {\displaystyle U} 表示一個簡單的體積 Ω {\displaystyle \Omega } ,那麼總交集是 ∭ q ∈ R 3 J ( q ) δ 3 ( q ; Ω ) d V = ∭ q ∈ Ω J ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {J} (\mathbf {q} )\delta _{3}(\mathbf {q} ;\Omega )dV=\iiint _{\mathbf {q} \in \Omega }\mathbf {J} (\mathbf {q} )dV} .
當一個曲面 σ 1 {\displaystyle \sigma _{1}} 權重為 w 1 {\displaystyle w_{1}} 與另一個曲面 σ 2 {\displaystyle \sigma _{2}} 相交,後者權重為 w 2 {\displaystyle w_{2}} ,那麼交集是一個路徑 σ 1 ∩ σ 2 {\displaystyle \sigma _{1}\cap \sigma _{2}} ,權重為 w 1 w 2 {\displaystyle w_{1}w_{2}} 。路徑 σ 1 ∩ σ 2 {\displaystyle \sigma _{1}\cap \sigma _{2}} 的方向定義如下:觀察交集,其中 σ 1 {\displaystyle \sigma _{1}} 和 σ 2 {\displaystyle \sigma _{2}} 的曲面法向量都指向觀察者,交集路徑在 σ 1 {\displaystyle \sigma _{1}} 的右側,在 σ 2 {\displaystyle \sigma _{2}} 的左側。換句話說,交集路徑的方向根據“右手規則”確定,其中 σ 1 {\displaystyle \sigma _{1}} 的曲面法向量是“x”方向, σ 2 {\displaystyle \sigma _{2}} 的曲面法向量是“y”方向。下面的圖片展示了多曲面與多曲面交集的示例。
一張 3D 影像,展示了兩個曲面的交集。曲面 1 是藍色的,法向量朝上。曲面 2 是紅色的,法向量朝右。交集是黑色的曲線。交集曲線的方向由右手規則確定,其中曲面 1 的曲面法向量是“x”方向,曲面 2 的曲面法向量是“y”方向。
兩個多曲面的交集。第一個多曲面是藍色的層疊板,第二個多曲面是紅色的層疊板。向量 F 是藍色板中的曲面密度。向量 G 是紅色板中的曲面密度。綠色平行四邊形是形成交集的稜柱體的 2D 橫截面。隨著角度 theta 與 90 度的偏離,交集路徑變得更加稀疏,因此交集路徑密度是 F 和 G 的叉積。在本例中,交集路徑也指向螢幕外。
在上圖右側,第一個多曲面由一個向量場表示,該向量場在藍色薄片中值為 F {\displaystyle \mathbf {F} } ,而在其他地方為 0 {\displaystyle \mathbf {0} } 。第二個多曲面由一個向量場表示,該向量場在紅色薄片中值為 G {\displaystyle \mathbf {G} } ,而在其他地方為 0 {\displaystyle \mathbf {0} } 。藍色薄片的總表面權重為 | F | Δ t 1 {\displaystyle |\mathbf {F} |\Delta t_{1}} ,紅色薄片的總表面權重為 | G | Δ t 2 {\displaystyle |\mathbf {G} |\Delta t_{2}} 。所有交叉路徑的總權重為 ( | F | Δ t 1 ) ( | G | Δ t 2 ) = | F | | G | Δ t 1 Δ t 2 {\displaystyle (|\mathbf {F} |\Delta t_{1})(|\mathbf {G} |\Delta t_{2})=|\mathbf {F} ||\mathbf {G} |\Delta t_{1}\Delta t_{2}} 。交叉路徑均勻分佈的橫截面積為 Δ t 1 Δ t 2 / sin θ {\displaystyle \Delta t_{1}\Delta t_{2}/\sin \theta } 。交叉路徑密度為 | F | | G | Δ t 1 Δ t 2 Δ t 1 Δ t 2 / sin θ = | F | | G | sin θ = | F × G | {\displaystyle {\frac {|\mathbf {F} ||\mathbf {G} |\Delta t_{1}\Delta t_{2}}{\Delta t_{1}\Delta t_{2}/\sin \theta }}=|\mathbf {F} ||\mathbf {G} |\sin \theta =|\mathbf {F} \times \mathbf {G} |} 。最後,需要注意的是,交叉路徑根據右手定則指向螢幕外。
給定一個具有向量場 F 1 {\displaystyle \mathbf {F} _{1}} 的多曲面,以及一個具有向量場 F 2 {\displaystyle \mathbf {F} _{2}} 的多曲面,則它們的交點為具有向量場 F 1 × F 2 {\displaystyle \mathbf {F} _{1}\times \mathbf {F} _{2}} 的多路徑。
多曲面 F 1 {\displaystyle \mathbf {F} _{1}} 和多曲面 F 2 {\displaystyle \mathbf {F} _{2}} 之間的總交集為 ∭ q ∈ R 3 ( F 1 ( q ) × F 2 ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\mathbf {F} _{1}(\mathbf {q} )\times \mathbf {F} _{2}(\mathbf {q} ))dV} .
如果 F 2 {\displaystyle \mathbf {F} _{2}} 表示一個簡單的曲面 σ {\displaystyle \sigma } ,則總交集為 ∭ q ∈ R 3 ( F 1 ( q ) × δ 2 ( q ; σ ) ) d V = ∬ q ∈ σ F 1 ( q ) × d S {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\mathbf {F} _{1}(\mathbf {q} )\times \delta _{2}(\mathbf {q} ;\sigma ))dV=\iint _{\mathbf {q} \in \sigma }\mathbf {F} _{1}(\mathbf {q} )\times d\mathbf {S} } .
當一個權重為 w 1 {\displaystyle w_{1}} 的曲面 σ {\displaystyle \sigma } 與一個權重為 w 2 {\displaystyle w_{2}} 的體積 Ω {\displaystyle \Omega } 相交,則交集為權重為 w 1 w 2 {\displaystyle w_{1}w_{2}} 的曲面 σ ∩ Ω {\displaystyle \sigma \cap \Omega } 。給定一個多曲面和一個多體積,交集是每個簡單曲面與每個簡單體積的成對交集的總和。下圖給出了多曲面與多體積交集的例子。
左圖描繪了一個多曲面和一個多體積。右圖描繪了多曲面和多體積之間的交集,它本身也是一個多曲面。注意,曲面在負權體積中的方向是反轉的。此外,左上角權重為 2 的體積區域中的曲面段的權重為 2,如較粗的線所示。
給定一個具有向量場 F {\displaystyle \mathbf {F} } 的多曲面,以及一個具有標量場 U {\displaystyle U} 的多體積,則它們的交集是一個具有向量場 F U {\displaystyle \mathbf {F} U} 的多曲面。
多曲面 F {\displaystyle \mathbf {F} } 和多體積 U {\displaystyle U} 之間的總交集為 ∭ q ∈ R 3 F ( q ) U ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} (\mathbf {q} )U(\mathbf {q} )dV} 。
如果 F {\displaystyle \mathbf {F} } 表示一個簡單曲面 σ {\displaystyle \sigma } ,則總交集為 ∭ q ∈ R 3 δ 2 ( q ; σ ) U ( q ) d V = ∬ q ∈ σ U ( q ) d S {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{2}(\mathbf {q} ;\sigma )U(\mathbf {q} )dV=\iint _{\mathbf {q} \in \sigma }U(\mathbf {q} )d\mathbf {S} } 。
如果 U {\displaystyle U} 表示一個簡單體積 Ω {\displaystyle \Omega } ,則總交集為 ∭ q ∈ R 3 F ( q ) δ 3 ( q ; Ω ) d V = ∭ q ∈ Ω F ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} (\mathbf {q} )\delta _{3}(\mathbf {q} ;\Omega )dV=\iiint _{\mathbf {q} \in \Omega }\mathbf {F} (\mathbf {q} )dV} 。
當一個體積為 Ω 1 {\displaystyle \Omega _{1}} 的物體與一個體積為 Ω 2 {\displaystyle \Omega _{2}} 的物體相交時,其交集的體積為 Ω 1 ∩ Ω 2 {\displaystyle \Omega _{1}\cap \Omega _{2}} ,其權重為 w 1 w 2 {\displaystyle w_{1}w_{2}} 。對於兩個多體積,其交集是第一個多體積中每個簡單體積與第二個多體積中每個簡單體積的成對交集的總和。下面的圖片展示了兩個多體積之間的交集示例。
左邊的兩個面板分別顯示了一個多體積,最右邊的面板顯示了這兩個多體積的交集。兩個簡單體積的交集的權重是這兩個體積的權重的乘積。
給定一個具有標量場 U 1 {\displaystyle U_{1}} 的多體積,以及一個具有標量場 U 2 {\displaystyle U_{2}} 的多體積,則其交集是一個具有標量場 U 1 U 2 {\displaystyle U_{1}U_{2}} 的多體積。
多體積 U 1 {\displaystyle U_{1}} 和多體積 U 2 {\displaystyle U_{2}} 之間的總交集為 ∭ q ∈ R 3 U 1 ( q ) U 2 ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}U_{1}(\mathbf {q} )U_{2}(\mathbf {q} )dV} .
如果 U 2 {\displaystyle U_{2}} 表示一個簡單體積 Ω {\displaystyle \Omega } ,則總交集為 ∭ q ∈ R 3 U 1 ( q ) δ 3 ( q ; Ω ) d V = ∭ q ∈ Ω U 1 ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}U_{1}(\mathbf {q} )\delta _{3}(\mathbf {q} ;\Omega )dV=\iiint _{\mathbf {q} \in \Omega }U_{1}(\mathbf {q} )dV} .
其他型別的交集,例如點-點交集、點-路徑交集、點-表面交集和路徑-路徑交集,不被考慮,因為這些型別的交集只能透過設計發生。例如,兩個隨機選擇的點相交的機率為 0,但如果隨機選擇一個點和一個體積,那麼該點落在該體積內的機率是非零的。對於兩個不相關的點,這兩個點永遠不會落在彼此之上,因為點要重合,必須存在先前的關係。以下是各種型別的交集的總結
交集
結構
多點 ρ 2 {\displaystyle \rho _{2}}
多路徑 J 2 {\displaystyle \mathbf {J} _{2}}
多表面 F 2 {\displaystyle \mathbf {F} _{2}}
多體積 U 2 {\displaystyle U_{2}}
多點 ρ 1 {\displaystyle \rho _{1}}
n/a
n/a
n/a
多點 ρ 1 U 2 {\displaystyle \rho _{1}U_{2}}
多路徑 J 1 {\displaystyle \mathbf {J} _{1}}
n/a
n/a
多點 J 1 ⋅ F 2 {\displaystyle \mathbf {J} _{1}\cdot \mathbf {F} _{2}}
多路徑 J 1 U 2 {\displaystyle \mathbf {J} _{1}U_{2}}
多表面 F 1 {\displaystyle \mathbf {F} _{1}}
n/a
多點 F 1 ⋅ J 2 {\displaystyle \mathbf {F} _{1}\cdot \mathbf {J} _{2}}
多路徑 F 1 × F 2 {\displaystyle \mathbf {F} _{1}\times \mathbf {F} _{2}}
多曲面 F 1 U 2 {\displaystyle \mathbf {F} _{1}U_{2}}
多體積 U 1 {\displaystyle U_{1}}
多點 U 1 ρ 2 {\displaystyle U_{1}\rho _{2}}
多路徑 U 1 J 2 {\displaystyle U_{1}\mathbf {J} _{2}}
多曲面 U 1 F 2 {\displaystyle U_{1}\mathbf {F} _{2}}
多體積 U 1 U 2 {\displaystyle U_{1}U_{2}}
給定一條簡單路徑 C {\displaystyle C} ,它從點 C ( 0 ) {\displaystyle C(0)} 開始,到點 C ( 1 ) {\displaystyle C(1)} 結束, C {\displaystyle C} 的“端點”是多點 { ( C ( 0 ) , + 1 ) , ( C ( 1 ) , − 1 ) } {\displaystyle \{(C(0),+1),(C(1),-1)\}} ,它由權重為 +1 的起點和權重為 -1 的終點組成。當 C {\displaystyle C} 由向量場 δ 1 ( q ; C ) {\displaystyle \delta _{1}(\mathbf {q} ;C)} 表示時,其端點由標量場 δ 0 ( q ; C ( 0 ) ) − δ 0 ( q ; C ( 1 ) ) {\displaystyle \delta _{0}(\mathbf {q} ;C(0))-\delta _{0}(\mathbf {q} ;C(1))} 表示。下面的影像給出了一些簡單路徑及其關聯端點的示例。
一系列面板,每個面板描繪了一條定向路徑及其端點。路徑的端點由起始點處的正權重點和結束點處的負權重點組成。
給定一條多路徑 C = { ( C 1 , w 1 ) , ( C 2 , w 2 ) , . . . , ( C k , w k ) } {\displaystyle \mathbf {C} =\{(C_{1},w_{1}),(C_{2},w_{2}),...,(C_{k},w_{k})\}} , C {\displaystyle \mathbf {C} } 的端點是多點 { ( C 1 ( 0 ) , + 1 ) , ( C 1 ( 1 ) , − 1 ) , ( C 2 ( 0 ) , + 1 ) , ( C 2 ( 1 ) , − 1 ) , . . . , ( C k ( 0 ) , + 1 ) , ( C k ( 1 ) , − 1 ) } {\displaystyle \{(C_{1}(0),+1),(C_{1}(1),-1),(C_{2}(0),+1),(C_{2}(1),-1),...,(C_{k}(0),+1),(C_{k}(1),-1)\}} .
給定一個表示多路徑的向量場 J {\displaystyle \mathbf {J} } ,表示該向量場終點的多點由標量場 ∇ ⋅ J {\displaystyle \nabla \cdot \mathbf {J} } 表示。 在點 q {\displaystyle \mathbf {q} } 處計算標量場 ∇ ⋅ J {\displaystyle \nabla \cdot \mathbf {J} } 的值用 ∇ ⋅ J ( q ) {\displaystyle \nabla \cdot \mathbf {J} (\mathbf {q} )} , ( ∇ ⋅ J ) ( q ) {\displaystyle (\nabla \cdot \mathbf {J} )(\mathbf {q} )} 或 ∇ ⋅ J | q {\displaystyle \nabla \cdot \mathbf {J} |_{\mathbf {q} }} 表示。
沒有路徑延伸到無窮遠的要求意味著每個起點都與一個終點配對,因此所有終點的總權重為0: ∭ q ∈ R 3 ( ∇ ⋅ J ( q ) ) d V = 0 {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \cdot \mathbf {J} (\mathbf {q} ))dV=0} .
路徑的終點是路徑與“現實表面”的交點。
符號 ∇ ⋅ J {\displaystyle \nabla \cdot \mathbf {J} } 與多路徑 J {\displaystyle \mathbf {J} } 與多表面 F {\displaystyle \mathbf {F} } 的交點,用 F ⋅ J {\displaystyle \mathbf {F} \cdot \mathbf {J} } 表示,是有道理的,如果我們將 ∇ {\displaystyle \nabla } 解釋為“現實表面”。一個起點形成於一條路徑戳入現即時,而一個終點形成於一條路徑從現實中戳出時。
在右邊的影像中,展示了對 ∇ {\displaystyle \nabla } 的“現實表面”解釋的描述。右邊是一條簡單的路徑 F {\displaystyle \mathbf {F} } ,以及它的端點 ∇ ⋅ F {\displaystyle \nabla \cdot \mathbf {F} } 。左邊 F ext {\displaystyle \mathbf {F} _{\text{ext}}} 是 F {\displaystyle \mathbf {F} } 的一個延伸,它位於表面 G ∇ {\displaystyle \mathbf {G} _{\nabla }} 的“面紗”後面。 F ext {\displaystyle \mathbf {F} _{\text{ext}}} 從 G ∇ {\displaystyle \mathbf {G} _{\nabla }} 中伸出來,並與 G ∇ {\displaystyle \mathbf {G} _{\nabla }} 相交,這些交點與 F {\displaystyle \mathbf {F} } 的端點一致,即 G ∇ ⋅ F ext = ∇ ⋅ F {\displaystyle \mathbf {G} _{\nabla }\cdot \mathbf {F} _{\text{ext}}=\nabla \cdot \mathbf {F} } 。
給定一個定向表面 σ {\displaystyle \sigma } , σ {\displaystyle \sigma } 的“逆時針方向邊界”是一條路徑 ∂ σ {\displaystyle \partial \sigma } ,它以逆時針方向跟蹤 σ {\displaystyle \sigma } 的邊界。逆時針方向的描述如下:當位於邊界上時,逆時針方向是表面法向量指向“上”而表面本身位於“左”時的“前進”方向。下圖給出了幾個定向表面及其逆時針邊界的示例。特別注意第四個面板,它表明表面孔周圍的方向似乎是順時針方向。
一系列面板,每個面板都描繪了一個定向表面及其逆時針方向邊界。表面法向量由紅色箭頭表示。
給定一個多曲面 S = { ( σ 1 , w 1 ) , ( σ 2 , w 2 ) , . . . , ( σ k , w k ) } {\displaystyle \mathbf {S} =\{(\sigma _{1},w_{1}),(\sigma _{2},w_{2}),...,(\sigma _{k},w_{k})\}} , S {\displaystyle \mathbf {S} } 的逆時針邊界是多路徑 { ( ∂ σ 1 , w 1 ) , ( ∂ σ 2 , w 2 ) , . . . , ( ∂ σ k , w k ) } {\displaystyle \{(\partial \sigma _{1},w_{1}),(\partial \sigma _{2},w_{2}),...,(\partial \sigma _{k},w_{k})\}} .
給定一個向量場 F {\displaystyle \mathbf {F} } ,它表示一個多曲面,表示 F {\displaystyle \mathbf {F} } 逆時針邊界的那個多路徑,用向量場 ∇ × F {\displaystyle \nabla \times \mathbf {F} } 表示。在點 q {\displaystyle \mathbf {q} } 處對向量場 ∇ × F {\displaystyle \nabla \times \mathbf {F} } 的求值用 ∇ × F ( q ) {\displaystyle \nabla \times \mathbf {F} (\mathbf {q} )} , ( ∇ × F ) ( q ) {\displaystyle (\nabla \times \mathbf {F} )(\mathbf {q} )} 或者 ∇ × F | q {\displaystyle \nabla \times \mathbf {F} |_{\mathbf {q} }} 表示。
要求表面權重不能無限延伸意味著所有逆時針邊界形成閉合迴路,因此總逆時針邊界的總位移為 0 {\displaystyle \mathbf {0} } : ∭ q ∈ R 3 ( ∇ × F ( q ) ) d V = 0 {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \times \mathbf {F} (\mathbf {q} ))dV=\mathbf {0} } .
還需要注意的是,逆時針邊界沒有端點: ∇ ⋅ ( ∇ × F ) = 0 {\displaystyle \nabla \cdot (\nabla \times \mathbf {F} )=0} .
表面的邊界類似於表面與“現實表面”的交點。
符號 ∇ × F 2 {\displaystyle \nabla \times \mathbf {F} _{2}} 與多表面 F 1 {\displaystyle \mathbf {F} _{1}} 與多表面 F 2 {\displaystyle \mathbf {F} _{2}} 的交點相似,用 F 1 × F 2 {\displaystyle \mathbf {F} _{1}\times \mathbf {F} _{2}} 表示,如果將 ∇ {\displaystyle \nabla } 解釋為“現實表面”,那麼這種理解仍然是有意義的。當一個表面“切入”現即時,就會形成一條邊。
右邊的影像展示了 ∇ {\displaystyle \nabla } “現實表面”的解釋。右邊是一個簡單的表面 F {\displaystyle \mathbf {F} } ,以及它的逆時針邊界 ∇ × F {\displaystyle \nabla \times \mathbf {F} } 。左邊 F ext {\displaystyle \mathbf {F} _{\text{ext}}} 是 F {\displaystyle \mathbf {F} } 的延伸,位於表面 G ∇ {\displaystyle \mathbf {G} _{\nabla }} 的“面紗”之後。 F ext {\displaystyle \mathbf {F} _{\text{ext}}} 在與 F {\displaystyle \mathbf {F} } 邊界一致的曲線處切入 G ∇ {\displaystyle \mathbf {G} _{\nabla }} :即 G ∇ × F ext = ∇ × F {\displaystyle \mathbf {G} _{\nabla }\times \mathbf {F} _{\text{ext}}=\nabla \times \mathbf {F} } 。
給定一個體積 Ω {\displaystyle \Omega } , Ω {\displaystyle \Omega } 的“向內方向表面”是一個表面 ∂ Ω {\displaystyle \partial \Omega } ,它用表面法線指向內部包裹體積 Ω {\displaystyle \Omega } 。下面的圖片給出了一些體積及其向內方向表面的例子。
一系列面板,每個面板都描繪了一個體積及其向內方向表面。表面的向內方向由指向內部的紅色箭頭表示。
給定一個多體積 U = { ( Ω 1 , w 1 ) , ( Ω 2 , w 2 ) , . . . , ( Ω k , w k ) } {\displaystyle \mathbf {U} =\{(\Omega _{1},w_{1}),(\Omega _{2},w_{2}),...,(\Omega _{k},w_{k})\}} , U {\displaystyle \mathbf {U} } 的內向表面是多表面 { ( ∂ Ω 1 , w 1 ) , ( ∂ Ω 2 , w 2 ) , . . . , ( ∂ Ω k , w k ) } {\displaystyle \{(\partial \Omega _{1},w_{1}),(\partial \Omega _{2},w_{2}),...,(\partial \Omega _{k},w_{k})\}} 。
給定一個標量場 U {\displaystyle U} ,它表示多體積,則表示 U {\displaystyle U} 內向表面的多表面由向量場 ∇ U {\displaystyle \nabla U} 表示。向量場 ∇ U {\displaystyle \nabla U} 在點 q {\displaystyle \mathbf {q} } 處的取值表示為 ∇ U ( q ) {\displaystyle \nabla U(\mathbf {q} )} , ( ∇ U ) ( q ) {\displaystyle (\nabla U)(\mathbf {q} )} ,或 ∇ U | q {\displaystyle \nabla U|_{\mathbf {q} }} 。
沒有體積權重延伸到無窮大的要求意味著所有內向表面形成閉合表面,因此總內向表面的總表面向量為 0 {\displaystyle \mathbf {0} } : ∭ q ∈ R 3 ( ∇ U ( q ) ) d V = 0 {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla U(\mathbf {q} ))dV=\mathbf {0} } 。
同樣重要的是要注意,內向表面沒有邊界: ∇ × ( ∇ U ) = 0 {\displaystyle \nabla \times (\nabla U)=\mathbf {0} } 。
在這個二維橫截面中,體積的表面類似於體積與“現實表面”的交集。
符號 ∇ U {\displaystyle \nabla U} 與多重曲面 F {\displaystyle \mathbf {F} } 與多重體積 U {\displaystyle U} 的交集的相似性,用 F U {\displaystyle \mathbf {F} U} 表示,如果將 ∇ {\displaystyle \nabla } 解釋為“現實的表面”,再次是有意義的。當體積“推動”進入現即時,就會從現實的表面形成一個表面。
在右側的影像中,顯示了 ∇ {\displaystyle \nabla } 的“現實的表面”解釋的描述。為了簡單起見,該影像是一個二維橫截面。右側是一個簡單的體積 U {\displaystyle U} ,以及它的內向表面 ∇ U {\displaystyle \nabla U} 。左側 U ext {\displaystyle U_{\text{ext}}} 是 U {\displaystyle U} 的延伸,它位於表面 G ∇ {\displaystyle \mathbf {G} _{\nabla }} 的“面紗”之後。 U ext {\displaystyle U_{\text{ext}}} 以與 U {\displaystyle U} 的表面一致的表面穿過 G ∇ {\displaystyle \mathbf {G} _{\nabla }} :即 G ∇ U ext = ∇ U {\displaystyle \mathbf {G} _{\nabla }U_{\text{ext}}=\nabla U} 。
如果簡單路徑的起點和終點相同,則該路徑為“閉合”或“迴路”,因此由於起點和終點的權重抵消,總端點為 0。更一般地說,如果 ∇ ⋅ J = 0 {\displaystyle \nabla \cdot \mathbf {J} =0} ,則多重路徑 J {\displaystyle \mathbf {J} } 為“閉合”或“多重回路”。如前所述,曲面的逆時針邊界是閉合的。
如果簡單曲面沒有邊界,則該曲面為“閉合”或“氣泡”。更一般地說,如果 ∇ × F = 0 {\displaystyle \nabla \times \mathbf {F} =\mathbf {0} } ,則多重曲面 F {\displaystyle \mathbf {F} } 為“閉合”或“多重氣泡”。如前所述,體積的內向表面是閉合的。
很明顯,在一個封閉的多路徑中存在的總位移是 0 {\displaystyle \mathbf {0} } : ∇ ⋅ J = 0 ⟹ ∭ q ∈ R 3 J d V = 0 {\displaystyle \nabla \cdot \mathbf {J} =0\implies \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {J} dV=\mathbf {0} } ,並且很明顯,一個封閉多曲面的總表面向量也是 0 {\displaystyle \mathbf {0} } : ∇ × F = 0 ⟹ ∭ q ∈ R 3 F d V = 0 {\displaystyle \nabla \times \mathbf {F} =\mathbf {0} \implies \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} dV=\mathbf {0} } 。
給定一個簡單迴圈和一個簡單氣泡,迴圈進入氣泡的次數等於迴圈離開氣泡的次數。
給定一個簡單迴圈和一個簡單氣泡,所有交點的總點權為 0:迴圈每次進入氣泡,就必須離開氣泡,這兩個交點的權重相互抵消。更一般地,給定一個封閉的多路徑 J {\displaystyle \mathbf {J} } 和一個封閉的多曲面 F {\displaystyle \mathbf {F} } ,則總交點權重為 0: ( ∇ ⋅ J = 0 and ∇ × F = 0 ) ⟹ ∭ q ∈ R 3 ( J ⋅ F ) d V = 0 {\displaystyle (\nabla \cdot \mathbf {J} =0\;{\text{and}}\;\nabla \times \mathbf {F} =\mathbf {0} )\implies \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\mathbf {J} \cdot \mathbf {F} )dV=0} 。
上述恆等式導致以下觀察結果
多迴圈和多曲面的總交點權重純粹是多迴圈和多曲面的逆時針邊界函式:多曲面的內部無關緊要。如果 ∇ ⋅ J = 0 {\displaystyle \nabla \cdot \mathbf {J} =0} 和 ∇ × F 1 = ∇ × F 2 {\displaystyle \nabla \times \mathbf {F} _{1}=\nabla \times \mathbf {F} _{2}} ,則 ∭ q ∈ R 3 ( J ⋅ F 1 ) d V = ∭ q ∈ R 3 ( J ⋅ F 2 ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\mathbf {J} \cdot \mathbf {F} _{1})dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\mathbf {J} \cdot \mathbf {F} _{2})dV} 。
多路徑和多泡的總交點權重純粹是多泡和多路徑的端點的函式:多路徑的內部無關緊要。如果 ∇ × F = 0 {\displaystyle \nabla \times \mathbf {F} =\mathbf {0} } 並且 ∇ ⋅ J 1 = ∇ ⋅ J 2 {\displaystyle \nabla \cdot \mathbf {J} _{1}=\nabla \cdot \mathbf {J} _{2}} ,那麼 ∭ q ∈ R 3 ( J 1 ⋅ F ) d V = ∭ q ∈ R 3 ( J 2 ⋅ F ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\mathbf {J} _{1}\cdot \mathbf {F} )dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\mathbf {J} _{2}\cdot \mathbf {F} )dV} 。
體積的內向表面是閉合的。相反,給定一個閉合表面,存在一個“填充”該表面的體積。更一般地,給定一個多泡 F {\displaystyle \mathbf {F} } ,存在一個多體積 U {\displaystyle U} ,其中 F {\displaystyle \mathbf {F} } 是 U {\displaystyle U} 的內向多表面: ∇ × F = 0 ⟹ ∃ U : ∇ U = F {\displaystyle \nabla \times \mathbf {F} =\mathbf {0} \implies \exists U:\nabla U=\mathbf {F} } 。這個多體積被稱為 F {\displaystyle \mathbf {F} } 的“標量勢”。體積不能延伸到無窮大的要求意味著 U {\displaystyle U} 是唯一的。
表面的逆時針方向邊界是閉合的。相反,給定一個迴圈,存在一個“填充”該迴圈的表面。更一般地,給定一個多迴圈 J {\displaystyle \mathbf {J} } ,存在一個多表面 F {\displaystyle \mathbf {F} } ,其中 J {\displaystyle \mathbf {J} } 是 F {\displaystyle \mathbf {F} } 的逆時針方向邊界: ∇ ⋅ J = 0 ⟹ ∃ F : ∇ × F = J {\displaystyle \nabla \cdot \mathbf {J} =0\implies \exists \mathbf {F} :\nabla \times \mathbf {F} =\mathbf {J} } 。這個多表面被稱為 J {\displaystyle \mathbf {J} } 的“向量勢”。即使有表面不能延伸到無窮大的要求, F {\displaystyle \mathbf {F} } 不是 唯一的,除非有額外的限制。
此影像描繪了頂部的廣義座標格。影像底部是單個體積元素,其中包含基礎位移(逆變)向量,以及基礎曲面(協變)向量。
本節將描述如何在給定曲線座標系的情況下計算各種量,例如交點、端點、邊界和曲面。
設曲線座標系為任意。設索引所有點的 3 個座標為 c 1 , c 2 , c 3 {\displaystyle c_{1},c_{2},c_{3}} 。座標將用三元組 ( c 1 , c 2 , c 3 ) {\displaystyle (c_{1},c_{2},c_{3})} 表示。
在下文中,將使用以下符號:
給定任意表達式 f : { 1 , 2 , 3 } → R {\displaystyle f:\{1,2,3\}\to \mathbb {R} } ,它將一個實數分配給每個索引 i = 1 , 2 , 3 {\displaystyle i=1,2,3} ,則 ( i ; f ( i ) ) {\displaystyle (i;f(i))} 將表示三元組 ( f ( 1 ) , f ( 2 ) , f ( 3 ) ) {\displaystyle (f(1),f(2),f(3))} 。
給定索引變數 i , j ∈ { 1 , 2 , 3 } {\displaystyle i,j\in \{1,2,3\}} ,表示式 1 ( i = j ) {\displaystyle \mathbf {1} (i=j)} 當 i = j {\displaystyle i=j} 時等於 1,否則等於 0。
給定任意表達式 f : { 1 , 2 , 3 } → R {\displaystyle f:\{1,2,3\}\to \mathbb {R} } ,它將一個實數分配給每個索引 i = 1 , 2 , 3 {\displaystyle i=1,2,3} ,則 ∑ i f ( i ) {\displaystyle \sum _{i}f(i)} 將表示和 f ( 1 ) + f ( 2 ) + f ( 3 ) {\displaystyle f(1)+f(2)+f(3)} 。
給定一個索引變數 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , i + 1 {\displaystyle i+1} 將使 i {\displaystyle i} 向前旋轉 1 位,而 i + 2 {\displaystyle i+2} 將使 i {\displaystyle i} 向前旋轉 2 位。本質上, i + 1 = { i + 1 ( i = 1 , 2 ) 1 ( i = 3 ) {\displaystyle i+1=\left\{{\begin{array}{cc}i+1&(i=1,2)\\1&(i=3)\end{array}}\right.} 以及 i + 2 = { 3 ( i = 1 ) i − 1 ( i = 2 , 3 ) {\displaystyle i+2=\left\{{\begin{array}{cc}3&(i=1)\\i-1&(i=2,3)\end{array}}\right.} .
從任意座標 ( c 1 ′ , c 2 ′ , c 3 ′ ) = ( j ; c j ′ ) {\displaystyle (c'_{1},c'_{2},c'_{3})=(j;c'_{j})} 開始,並引入無窮小差值 Δ c 1 {\displaystyle \Delta c_{1}} , Δ c 2 {\displaystyle \Delta c_{2}} ,以及 Δ c 3 {\displaystyle \Delta c_{3}} 。以下 3 條路徑、3 個曲面和體積將與點 ( j ; c j ′ ) {\displaystyle (j;c'_{j})} 相關聯
For each i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} there exists an infinitely short path C i ( ( j ; c j ′ ) ) {\displaystyle C_{i}((j;c'_{j}))} starting from point ( j ; c j ′ ) {\displaystyle (j;c'_{j})} and ending on point ( j ; c j ′ + Δ c i 1 ( j = i ) ) {\displaystyle (j;c'_{j}+\Delta c_{i}\mathbf {1} (j=i))} along the curve defined by c i ′ ≤ c i < c i ′ + Δ c i {\displaystyle c'_{i}\leq c_{i}<c'_{i}+\Delta c_{i}} , c i + 1 = c i + 1 ′ {\displaystyle c_{i+1}=c'_{i+1}} and c i + 2 = c i + 2 ′ {\displaystyle c_{i+2}=c'_{i+2}} . The displacement covered by C i ( ( j ; c j ′ ) ) {\displaystyle C_{i}((j;c'_{j}))} is approximately Δ c i ⋅ l i ( ( j ; c j ′ ) ) ⋅ a ^ i ( ( j ; c j ′ ) ) {\displaystyle \Delta c_{i}\cdot l_{i}((j;c'_{j}))\cdot {\hat {\mathbf {a} }}_{i}((j;c'_{j}))} where a ^ i ( ( j ; c j ′ ) ) {\displaystyle {\hat {\mathbf {a} }}_{i}((j;c'_{j}))} is a unit length vector that is parallel to the displacement between points ( j ; c j ′ ) {\displaystyle (j;c'_{j})} and ( j ; c j ′ + Δ c i 1 ( j = i ) ) {\displaystyle (j;c'_{j}+\Delta c_{i}\mathbf {1} (j=i))} , and Δ c i ⋅ l i ( ( j ; c j ′ ) ) {\displaystyle \Delta c_{i}\cdot l_{i}((j;c'_{j}))} is the length of the displacement. Note that the length of the displacement is proportional to Δ c i {\displaystyle \Delta c_{i}} , with l i ( ( j ; c j ′ ) ) {\displaystyle l_{i}((j;c'_{j}))} being the constant of proportionality. The set of vectors { a ^ 1 ( ( j ; c j ′ ) ) , a ^ 2 ( ( j ; c j ′ ) ) , a ^ 3 ( ( j ; c j ′ ) ) } {\displaystyle \{{\hat {\mathbf {a} }}_{1}((j;c'_{j})),{\hat {\mathbf {a} }}_{2}((j;c'_{j})),{\hat {\mathbf {a} }}_{3}((j;c'_{j}))\}} is the set of displacement basis vectors .
For each i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} there exists an infinitely small surface σ i ( ( j ; c j ′ ) ) {\displaystyle \sigma _{i}((j;c'_{j}))} that is defined by the following: c i = c i ′ {\displaystyle c_{i}=c'_{i}} , c i + 1 ′ ≤ c i + 1 < c i + 1 ′ + Δ c i + 1 {\displaystyle c'_{i+1}\leq c_{i+1}<c'_{i+1}+\Delta c_{i+1}} , and c i + 2 ′ ≤ c i + 2 < c i + 2 ′ + Δ c i + 2 {\displaystyle c'_{i+2}\leq c_{i+2}<c'_{i+2}+\Delta c_{i+2}} . The orientation of σ i ( ( j ; c j ′ ) ) {\displaystyle \sigma _{i}((j;c'_{j}))} is in the direction of increasing c i {\displaystyle c_{i}} . The surface vector of σ i ( ( j ; c j ′ ) ) {\displaystyle \sigma _{i}((j;c'_{j}))} is approximately Δ c i + 1 Δ c i + 2 ⋅ A i ( ( j ; c j ′ ) ) ⋅ a ^ i ( ( j ; c j ′ ) ) {\displaystyle \Delta c_{i+1}\Delta c_{i+2}\cdot A_{i}((j;c'_{j}))\cdot {\hat {\mathbf {a} }}^{i}((j;c'_{j}))} where a ^ i ( ( j ; c j ′ ) ) {\displaystyle {\hat {\mathbf {a} }}^{i}((j;c'_{j}))} is a unit length vector that is perpendicular to σ i ( ( j ; c j ′ ) ) {\displaystyle \sigma _{i}((j;c'_{j}))} , and Δ c i + 1 Δ c i + 2 ⋅ A i ( ( j ; c j ′ ) ) {\displaystyle \Delta c_{i+1}\Delta c_{i+2}\cdot A_{i}((j;c'_{j}))} is the area of σ i ( ( j ; c j ′ ) ) {\displaystyle \sigma _{i}((j;c'_{j}))} . Note that the area of σ i ( ( j ; c j ′ ) ) {\displaystyle \sigma _{i}((j;c'_{j}))} is proportional to Δ c i + 1 Δ c i + 2 {\displaystyle \Delta c_{i+1}\Delta c_{i+2}} , with A i ( ( j ; c j ′ ) ) {\displaystyle A_{i}((j;c'_{j}))} being the constant of proportionality. The set of vectors { a ^ 1 ( ( j ; c j ′ ) ) , a ^ 2 ( ( j ; c j ′ ) ) , a ^ 3 ( ( j ; c j ′ ) ) } {\displaystyle \{{\hat {\mathbf {a} }}^{1}((j;c'_{j})),{\hat {\mathbf {a} }}^{2}((j;c'_{j})),{\hat {\mathbf {a} }}^{3}((j;c'_{j}))\}} is the set of surface basis vectors .
存在一個無限小的體積 Ω ( ( j ; c j ′ ) ) {\displaystyle \Omega ((j;c'_{j}))} ,由 c 1 ′ ≤ c 1 < c 1 ′ + Δ c 1 {\displaystyle c'_{1}\leq c_{1}<c'_{1}+\Delta c_{1}} , c 2 ′ ≤ c 2 < c 2 ′ + Δ c 2 {\displaystyle c'_{2}\leq c_{2}<c'_{2}+\Delta c_{2}} 和 c 3 ′ ≤ c 3 < c 3 ′ + Δ c 3 {\displaystyle c'_{3}\leq c_{3}<c'_{3}+\Delta c_{3}} 定義。 Ω ( ( j ; c j ′ ) ) {\displaystyle \Omega ((j;c'_{j}))} 的形狀近似於一個平行六面體。 Ω ( ( j ; c j ′ ) ) {\displaystyle \Omega ((j;c'_{j}))} 的體積近似於 Δ c 1 Δ c 2 Δ c 3 ⋅ V ( ( j ; c j ′ ) ) {\displaystyle \Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V((j;c'_{j}))} 。請注意, Ω ( ( j ; c j ′ ) ) {\displaystyle \Omega ((j;c'_{j}))} 的體積與 Δ c 1 Δ c 2 Δ c 3 {\displaystyle \Delta c_{1}\Delta c_{2}\Delta c_{3}} 成正比,其中 V ( ( j ; c j ′ ) ) {\displaystyle V((j;c'_{j}))} 是比例常數。
需要注意的是
( i ; c i ) ∈ Ω ( ( j ; c j ′ ) ) {\displaystyle (i;c_{i})\in \Omega ((j;c'_{j}))} 當且僅當 c 1 ′ ≤ c 1 < c 1 ′ + Δ c 1 {\displaystyle c'_{1}\leq c_{1}<c'_{1}+\Delta c_{1}} , c 2 ′ ≤ c 2 < c 2 ′ + Δ c 2 {\displaystyle c'_{2}\leq c_{2}<c'_{2}+\Delta c_{2}} 和 c 3 ′ ≤ c 3 < c 3 ′ + Δ c 3 {\displaystyle c'_{3}\leq c_{3}<c'_{3}+\Delta c_{3}} (注意上限的嚴格性)。
對於所有 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , C i ( ( j ; c j ) ) ⊆ Ω ( ( j ; c j ′ ) ) {\displaystyle C_{i}((j;c_{j}))\subseteq \Omega ((j;c'_{j}))} 當且僅當 c i = c i ′ {\displaystyle c_{i}=c'_{i}} , c i + 1 ′ ≤ c i + 1 < c i + 1 ′ + Δ c i + 1 {\displaystyle c'_{i+1}\leq c_{i+1}<c'_{i+1}+\Delta c_{i+1}} 以及 c i + 2 ′ ≤ c i + 2 < c i + 2 ′ + Δ c i + 2 {\displaystyle c'_{i+2}\leq c_{i+2}<c'_{i+2}+\Delta c_{i+2}} (注意上限的嚴格性)。
對於所有 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , σ i ( ( j ; c j ) ) ⊆ Ω ( ( j ; c j ′ ) ) {\displaystyle \sigma _{i}((j;c_{j}))\subseteq \Omega ((j;c'_{j}))} 當且僅當 c i ′ ≤ c i < c i ′ + Δ c i {\displaystyle c'_{i}\leq c_{i}<c'_{i}+\Delta c_{i}} (注意上限的嚴格性), c i + 1 = c i + 1 ′ {\displaystyle c_{i+1}=c'_{i+1}} 以及 c i + 2 = c i + 2 ′ {\displaystyle c_{i+2}=c'_{i+2}} .
多點、多路徑、多曲面和多體及其各自的標量場和向量場之間的轉換如下所示
This conversion is performed by subdividing space into discrete volumes or cells. Infinitesimal differences Δ c 1 {\displaystyle \Delta c_{1}} , Δ c 2 {\displaystyle \Delta c_{2}} , and Δ c 3 {\displaystyle \Delta c_{3}} are chosen, and a lattice consisting of the points ( j ; k j Δ c j ) {\displaystyle (j;k_{j}\Delta c_{j})} where ( j ; k j ) {\displaystyle (j;k_{j})} is an arbitrary triple of integers is generated. The cell indexed by ( j ; k j ) {\displaystyle (j;k_{j})} consists of the point ( j ; k j Δ c j ) {\displaystyle (j;k_{j}\Delta c_{j})} , the paths C i ( ( j ; k j Δ c j ) ) {\displaystyle C_{i}((j;k_{j}\Delta c_{j}))} for each i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , the surfaces σ i ( ( j ; k j Δ c j ) ) {\displaystyle \sigma _{i}((j;k_{j}\Delta c_{j}))} for each i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , and the volume Ω ( ( j ; k j Δ c j ) ) {\displaystyle \Omega ((j;k_{j}\Delta c_{j}))} . All points ( j ; c j ) {\displaystyle (j;c_{j})} where k i Δ c i ≤ c i < ( k i + 1 ) Δ c i {\displaystyle k_{i}\Delta c_{i}\leq c_{i}<(k_{i}+1)\Delta c_{i}} for all i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} "belong" to the cell indexed by ( j ; k j ) {\displaystyle (j;k_{j})} (note that the upper bounds are excluded). Given an arbitrary point ( j ; c j ) {\displaystyle (j;c_{j})} , the cell that contains ( j ; c j ) {\displaystyle (j;c_{j})} is indexed by ( j ; k j ) = ( j ; ⌊ c j Δ c j ⌋ ) {\displaystyle (j;k_{j})=\left(j;\left\lfloor {\frac {c_{j}}{\Delta c_{j}}}\right\rfloor \right)} . The point ( j ; c j ′ ) = ( j ; k j Δ c j ) {\displaystyle (j;c'_{j})=(j;k_{j}\Delta c_{j})} is the vertex that the cell is associated with.
透過計算每個像元包含的總點權重、位移、曲面向量或體積,然後對像元的體積進行平均,將多點、多路徑、多曲面或多體轉換為標量場或向量場。
將標量場 ρ {\displaystyle \rho } 轉換為多點,對於每個像元 ( j ; k j ) {\displaystyle (j;k_{j})} 執行以下操作。首先計算像元內包含的總點權重: ∭ q ∈ Ω ( ( j ; k j Δ c j ) ) ρ ( q ) d V ≈ ρ ( ( j ; k j Δ c j ) ) V ( ( j ; k j Δ c j ) ) Δ c 1 Δ c 2 Δ c 3 {\displaystyle \iiint _{\mathbf {q} \in \Omega ((j;k_{j}\Delta c_{j}))}\rho (\mathbf {q} )dV\approx \rho ((j;k_{j}\Delta c_{j}))V((j;k_{j}\Delta c_{j}))\Delta c_{1}\Delta c_{2}\Delta c_{3}} 。接下來將此權重分配給點 ( j ; k j Δ c j ) {\displaystyle (j;k_{j}\Delta c_{j})} .
A vector-field J = ∑ i J i a ^ i {\displaystyle \mathbf {J} =\sum _{i}J_{i}{\hat {\mathbf {a} }}_{i}} is converted to a multi-path by doing the following for each cell ( j ; k j ) {\displaystyle (j;k_{j})} . First compute the total displacement contained inside the cell: ∭ q ∈ Ω ( ( j ; k j Δ c j ) ) J ( q ) d V ≈ ( ∑ i J i ( ( j ; k j Δ c j ) ) a ^ i ( ( j ; k j Δ c j ) ) ) V ( ( j ; k j Δ c j ) ) Δ c 1 Δ c 2 Δ c 3 {\displaystyle \iiint _{\mathbf {q} \in \Omega ((j;k_{j}\Delta c_{j}))}\mathbf {J} (\mathbf {q} )dV\approx \left(\sum _{i}J_{i}((j;k_{j}\Delta c_{j})){\hat {\mathbf {a} }}_{i}((j;k_{j}\Delta c_{j}))\right)V((j;k_{j}\Delta c_{j}))\Delta c_{1}\Delta c_{2}\Delta c_{3}} . Next separate this total displacement into components according to the basis a ^ 1 {\displaystyle {\hat {\mathbf {a} }}_{1}} , a ^ 2 {\displaystyle {\hat {\mathbf {a} }}_{2}} , and a ^ 3 {\displaystyle {\hat {\mathbf {a} }}_{3}} : for each i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} the coefficient of a ^ i {\displaystyle {\hat {\mathbf {a} }}_{i}} is ∭ q ∈ Ω ( ( j ; k j Δ c j ) ) J i ( q ) d V ≈ J i ( ( j ; k j Δ c j ) ) V ( ( j ; k j Δ c j ) ) Δ c 1 Δ c 2 Δ c 3 {\displaystyle \iiint _{\mathbf {q} \in \Omega ((j;k_{j}\Delta c_{j}))}J_{i}(\mathbf {q} )dV\approx J_{i}((j;k_{j}\Delta c_{j}))V((j;k_{j}\Delta c_{j}))\Delta c_{1}\Delta c_{2}\Delta c_{3}} . Next for each i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , divide the coefficient of a ^ i {\displaystyle {\hat {\mathbf {a} }}_{i}} by the length of C i ( ( j ; k j Δ c j ) ) {\displaystyle C_{i}((j;k_{j}\Delta c_{j}))} , which results in approximately J i ( ( j ; k j Δ c j ) ) V ( ( j ; k j Δ c j ) ) l i ( ( j ; k j Δ c j ) ) Δ c i + 1 Δ c i + 2 {\displaystyle J_{i}((j;k_{j}\Delta c_{j})){\frac {V((j;k_{j}\Delta c_{j}))}{l_{i}((j;k_{j}\Delta c_{j}))}}\Delta c_{i+1}\Delta c_{i+2}} , and assign this weight to C i ( ( j ; k j Δ c j ) ) {\displaystyle C_{i}((j;k_{j}\Delta c_{j}))} .
A vector-field F = ∑ i F i a ^ i {\displaystyle \mathbf {F} =\sum _{i}F_{i}{\hat {\mathbf {a} }}^{i}} is converted to a multi-surface by doing the following for each cell ( j ; k j ) {\displaystyle (j;k_{j})} . First compute the total surface vector contained inside the cell: ∭ q ∈ Ω ( ( j ; k j Δ c j ) ) F ( q ) d V ≈ ( ∑ i F i ( ( j ; k j Δ c j ) ) a ^ i ( ( j ; k j Δ c j ) ) ) V ( ( j ; k j Δ c j ) ) Δ c 1 Δ c 2 Δ c 3 {\displaystyle \iiint _{\mathbf {q} \in \Omega ((j;k_{j}\Delta c_{j}))}\mathbf {F} (\mathbf {q} )dV\approx \left(\sum _{i}F_{i}((j;k_{j}\Delta c_{j})){\hat {\mathbf {a} }}^{i}((j;k_{j}\Delta c_{j}))\right)V((j;k_{j}\Delta c_{j}))\Delta c_{1}\Delta c_{2}\Delta c_{3}} . Next separate this total surface vector into components according to the basis a ^ 1 {\displaystyle {\hat {\mathbf {a} }}^{1}} , a ^ 2 {\displaystyle {\hat {\mathbf {a} }}^{2}} , and a ^ 3 {\displaystyle {\hat {\mathbf {a} }}^{3}} : for each i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} the coefficient of a ^ i {\displaystyle {\hat {\mathbf {a} }}^{i}} is ∭ q ∈ Ω ( ( j ; k j Δ c j ) ) F i ( q ) d V ≈ F i ( ( j ; k j Δ c j ) ) V ( ( j ; k j Δ c j ) ) Δ c 1 Δ c 2 Δ c 3 {\displaystyle \iiint _{\mathbf {q} \in \Omega ((j;k_{j}\Delta c_{j}))}F_{i}(\mathbf {q} )dV\approx F_{i}((j;k_{j}\Delta c_{j}))V((j;k_{j}\Delta c_{j}))\Delta c_{1}\Delta c_{2}\Delta c_{3}} . Next for each i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , divide the coefficient of a ^ i {\displaystyle {\hat {\mathbf {a} }}^{i}} by the area of σ i ( ( j ; k j Δ c j ) ) {\displaystyle \sigma _{i}((j;k_{j}\Delta c_{j}))} , which results in approximately F i ( ( j ; k j Δ c j ) ) V ( ( j ; k j Δ c j ) ) A i ( ( j ; k j Δ c j ) ) Δ c i {\displaystyle F_{i}((j;k_{j}\Delta c_{j})){\frac {V((j;k_{j}\Delta c_{j}))}{A_{i}((j;k_{j}\Delta c_{j}))}}\Delta c_{i}} , and assign this weight to σ i ( ( j ; k j Δ c j ) ) {\displaystyle \sigma _{i}((j;k_{j}\Delta c_{j}))} .
將標量場 U {\displaystyle U} 轉換為多體積,方法是針對每個單元格 ( j ; k j ) {\displaystyle (j;k_{j})} 執行以下步驟。首先計算單元格內部的總體積: ∭ q ∈ Ω ( ( j ; k j Δ c j ) ) U ( q ) d V ≈ U ( ( j ; k j Δ c j ) ) V ( ( j ; k j Δ c j ) ) Δ c 1 Δ c 2 Δ c 3 {\displaystyle \iiint _{\mathbf {q} \in \Omega ((j;k_{j}\Delta c_{j}))}U(\mathbf {q} )dV\approx U((j;k_{j}\Delta c_{j}))V((j;k_{j}\Delta c_{j}))\Delta c_{1}\Delta c_{2}\Delta c_{3}} 。接下來將此權重除以 Ω ( ( j ; k j Δ c j ) ) {\displaystyle \Omega ((j;k_{j}\Delta c_{j}))} 的體積,這將近似於 U ( ( j ; k j Δ c j ) ) {\displaystyle U((j;k_{j}\Delta c_{j}))} ,並將此權重分配給 Ω ( ( j ; k j Δ c j ) ) {\displaystyle \Omega ((j;k_{j}\Delta c_{j}))} 。
計算任何結構與多體積的交集是件簡單的事:只需將向量場的標量乘以表示多體積的標量場即可。然而,當兩個結構都由向量場表示時,計算交集就變得不那麼簡單了。
為了節省空間,將省略各種術語中的 ( j ; c j ) {\displaystyle (j;c_{j})} 和 ( j ; k j Δ c j ) {\displaystyle (j;k_{j}\Delta c_{j})} 。
給定一個多路徑 C {\displaystyle \mathbf {C} } ,用向量場 J = ∑ i J i a ^ i {\displaystyle \mathbf {J} =\sum _{i}J_{i}{\hat {\mathbf {a} }}_{i}} 表示,以及一個多表面 S {\displaystyle \mathbf {S} } ,用向量場 F = ∑ i F i a ^ i {\displaystyle \mathbf {F} =\sum _{i}F_{i}{\hat {\mathbf {a} }}^{i}} 表示,表示交點的標量場可以按如下方式計算
以下計算適用於每個單元格
對於每個 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,分配給 C i {\displaystyle C_{i}} 的權重由 C {\displaystyle \mathbf {C} } 計算如下: Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ J i {\displaystyle \Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V\cdot J_{i}} 是當前單元格包含的總位移的 a ^ i {\displaystyle {\hat {\mathbf {a} }}_{i}} 分量。計算分配給 C i {\displaystyle C_{i}} 的權重要求此位移分佈在 C i {\displaystyle C_{i}} 的長度上: Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ J i Δ c i ⋅ l i = V l i ⋅ Δ c i + 1 Δ c i + 2 ⋅ J i {\displaystyle {\frac {\Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V\cdot J_{i}}{\Delta c_{i}\cdot l_{i}}}={\frac {V}{l_{i}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot J_{i}} .
對於每個 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , S {\displaystyle \mathbf {S} } 分配給 σ i {\displaystyle \sigma _{i}} 的權重計算如下: Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ F i {\displaystyle \Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V\cdot F_{i}} 是當前單元格包含的總表面向量的 a ^ i {\displaystyle {\hat {\mathbf {a} }}^{i}} 分量。計算分配給 σ i {\displaystyle \sigma _{i}} 的權重需要將此表面向量分佈在 σ i {\displaystyle \sigma _{i}} 的面積上: Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ F i Δ c i + 1 Δ c i + 2 ⋅ A i = V A i ⋅ Δ c i ⋅ F i {\displaystyle {\frac {\Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V\cdot F_{i}}{\Delta c_{i+1}\Delta c_{i+2}\cdot A_{i}}}={\frac {V}{A_{i}}}\cdot \Delta c_{i}\cdot F_{i}} 。
C i {\displaystyle C_{i}} 和 σ i {\displaystyle \sigma _{i}} 之間的交點是當前的晶格點,其權重為 ( V l i ⋅ Δ c i + 1 Δ c i + 2 ⋅ J i ) ( V A i ⋅ Δ c i ⋅ F i ) {\displaystyle \left({\frac {V}{l_{i}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot J_{i}\right)\left({\frac {V}{A_{i}}}\cdot \Delta c_{i}\cdot F_{i}\right)} = V 2 l i A i ⋅ Δ c 1 Δ c 2 Δ c 3 ⋅ J i F i {\displaystyle ={\frac {V^{2}}{l_{i}A_{i}}}\cdot \Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot J_{i}F_{i}} 。
除了每個單元格中 C i {\displaystyle C_{i}} 和 σ i {\displaystyle \sigma _{i}} 之間的交集,以及 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,不會出現其他交集。當前單元格頂點處交集的總權重為 ∑ i V 2 l i A i ⋅ Δ c 1 Δ c 2 Δ c 3 ⋅ J i F i {\displaystyle \sum _{i}{\frac {V^{2}}{l_{i}A_{i}}}\cdot \Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot J_{i}F_{i}} = V 2 ⋅ Δ c 1 Δ c 2 Δ c 3 ∑ i 1 l i A i ⋅ J i F i {\displaystyle =V^{2}\cdot \Delta c_{1}\Delta c_{2}\Delta c_{3}\sum _{i}{\frac {1}{l_{i}A_{i}}}\cdot J_{i}F_{i}} .
當前單元格處 J ⋅ F {\displaystyle \mathbf {J} \cdot \mathbf {F} } 的值近似為 1 Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ V 2 ⋅ Δ c 1 Δ c 2 Δ c 3 ∑ i 1 l i A i ⋅ J i F i {\displaystyle {\frac {1}{\Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V}}\cdot V^{2}\cdot \Delta c_{1}\Delta c_{2}\Delta c_{3}\sum _{i}{\frac {1}{l_{i}A_{i}}}\cdot J_{i}F_{i}} = V ∑ i 1 l i A i ⋅ J i F i {\displaystyle =V\sum _{i}{\frac {1}{l_{i}A_{i}}}\cdot J_{i}F_{i}} 。係數 1 Δ c 1 Δ c 2 Δ c 3 ⋅ V {\displaystyle {\frac {1}{\Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V}}} 用於將點權重分散到當前單元格。
因此 J ⋅ F = V ∑ i 1 l i A i ⋅ J i F i {\displaystyle \mathbf {J} \cdot \mathbf {F} =V\sum _{i}{\frac {1}{l_{i}A_{i}}}\cdot J_{i}F_{i}} 。請注意, J {\displaystyle \mathbf {J} } 使用位移基向量表示,而 F {\displaystyle \mathbf {F} } 使用表面基向量表示。
為了節省空間,將省略各種術語中的 ( j ; c j ) {\displaystyle (j;c_{j})} 和 ( j ; k j Δ c j ) {\displaystyle (j;k_{j}\Delta c_{j})} 。
給定一個由向量場 F = ∑ i F i a ^ i {\displaystyle \mathbf {F} =\sum _{i}F_{i}{\hat {\mathbf {a} }}^{i}} 表示的多曲面 S 1 {\displaystyle \mathbf {S} _{1}} ,以及由向量場 G = ∑ i G i a ^ i {\displaystyle \mathbf {G} =\sum _{i}G_{i}{\hat {\mathbf {a} }}^{i}} 表示的多曲面 S 2 {\displaystyle \mathbf {S} _{2}} ,可以根據以下步驟計算表示其交點的向量場。
以下計算適用於每個單元格
對於每個 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,分配給 σ i {\displaystyle \sigma _{i}} 的 S 1 {\displaystyle \mathbf {S} _{1}} 的權重,可根據以下計算: Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ F i {\displaystyle \Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V\cdot F_{i}} 是當前單元包含的總表面向量在 a ^ i {\displaystyle {\hat {\mathbf {a} }}^{i}} 方向上的分量。計算分配給 σ i {\displaystyle \sigma _{i}} 的權重,需要將該表面向量分散到 σ i {\displaystyle \sigma _{i}} 的面積上: Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ F i Δ c i + 1 Δ c i + 2 ⋅ A i = V A i ⋅ Δ c i ⋅ F i {\displaystyle {\frac {\Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V\cdot F_{i}}{\Delta c_{i+1}\Delta c_{i+2}\cdot A_{i}}}={\frac {V}{A_{i}}}\cdot \Delta c_{i}\cdot F_{i}} 。類似地,分配給 σ i {\displaystyle \sigma _{i}} 的 S 2 {\displaystyle \mathbf {S} _{2}} 的權重為 V A i ⋅ Δ c i ⋅ G i {\displaystyle {\frac {V}{A_{i}}}\cdot \Delta c_{i}\cdot G_{i}} 。
σ i + 1 {\displaystyle \sigma _{i+1}} 和 σ i + 2 {\displaystyle \sigma _{i+2}} 之間的交點是路徑 C i {\displaystyle C_{i}} ,權重為 ( V A i + 1 ⋅ Δ c i + 1 ⋅ F i + 1 ) ( V A i + 2 ⋅ Δ c i + 2 ⋅ G i + 2 ) {\displaystyle \left({\frac {V}{A_{i+1}}}\cdot \Delta c_{i+1}\cdot F_{i+1}\right)\left({\frac {V}{A_{i+2}}}\cdot \Delta c_{i+2}\cdot G_{i+2}\right)} = V 2 A i + 1 A i + 2 ⋅ Δ c i + 1 Δ c i + 2 ⋅ F i + 1 G i + 2 {\displaystyle ={\frac {V^{2}}{A_{i+1}A_{i+2}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot F_{i+1}G_{i+2}} 。反之, σ i + 2 {\displaystyle \sigma _{i+2}} 和 σ i + 1 {\displaystyle \sigma _{i+1}} 之間的交點是路徑 C i {\displaystyle C_{i}} ,權重為 − V 2 A i + 2 A i + 1 ⋅ Δ c i + 2 Δ c i + 1 ⋅ F i + 2 G i + 1 {\displaystyle -{\frac {V^{2}}{A_{i+2}A_{i+1}}}\cdot \Delta c_{i+2}\Delta c_{i+1}\cdot F_{i+2}G_{i+1}} 。
除了 σ i + 1 {\displaystyle \sigma _{i+1}} 和 σ i + 2 {\displaystyle \sigma _{i+2}} 之間的交點,以及 σ i + 2 {\displaystyle \sigma _{i+2}} 和 σ i + 1 {\displaystyle \sigma _{i+1}} 之間的交點,對於每個單元格和 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,沒有其他交點發生。對於每個 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,分配給 C i {\displaystyle C_{i}} 的總權重為 V 2 A i + 1 A i + 2 ⋅ Δ c i + 1 Δ c i + 2 ⋅ F i + 1 G i + 2 − V 2 A i + 2 A i + 1 ⋅ Δ c i + 2 Δ c i + 1 ⋅ F i + 2 G i + 1 {\displaystyle {\frac {V^{2}}{A_{i+1}A_{i+2}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot F_{i+1}G_{i+2}-{\frac {V^{2}}{A_{i+2}A_{i+1}}}\cdot \Delta c_{i+2}\Delta c_{i+1}\cdot F_{i+2}G_{i+1}} = V 2 A i + 1 A i + 2 ⋅ Δ c i + 1 Δ c i + 2 ⋅ ( F i + 1 G i + 2 − F i + 2 G i + 1 ) {\displaystyle ={\frac {V^{2}}{A_{i+1}A_{i+2}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot (F_{i+1}G_{i+2}-F_{i+2}G_{i+1})} .
當前單元格中 F × G {\displaystyle \mathbf {F} \times \mathbf {G} } 的值大約為 ∑ i l i ⋅ Δ c i ⋅ a ^ i V ⋅ Δ c 1 Δ c 2 Δ c 3 ⋅ V 2 A i + 1 A i + 2 ⋅ Δ c i + 1 Δ c i + 2 ⋅ ( F i + 1 G i + 2 − F i + 2 G i + 1 ) {\displaystyle \sum _{i}{\frac {l_{i}\cdot \Delta c_{i}\cdot {\hat {\mathbf {a} }}_{i}}{V\cdot \Delta c_{1}\Delta c_{2}\Delta c_{3}}}\cdot {\frac {V^{2}}{A_{i+1}A_{i+2}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot (F_{i+1}G_{i+2}-F_{i+2}G_{i+1})} = ∑ i V l i A i + 1 A i + 2 ⋅ ( F i + 1 G i + 2 − F i + 2 G i + 1 ) a ^ i {\displaystyle =\sum _{i}{\frac {Vl_{i}}{A_{i+1}A_{i+2}}}\cdot (F_{i+1}G_{i+2}-F_{i+2}G_{i+1}){\hat {\mathbf {a} }}_{i}} 。 l i ⋅ Δ c i ⋅ a ^ i V ⋅ Δ c 1 Δ c 2 Δ c 3 {\displaystyle {\frac {l_{i}\cdot \Delta c_{i}\cdot {\hat {\mathbf {a} }}_{i}}{V\cdot \Delta c_{1}\Delta c_{2}\Delta c_{3}}}} 係數的存在是為了將每條路徑的位移分佈到當前單元格中。
因此 F × G = ∑ i V l i A i + 1 A i + 2 ⋅ ( F i + 1 G i + 2 − F i + 2 G i + 1 ) a ^ i {\displaystyle \mathbf {F} \times \mathbf {G} =\sum _{i}{\frac {Vl_{i}}{A_{i+1}A_{i+2}}}\cdot (F_{i+1}G_{i+2}-F_{i+2}G_{i+1}){\hat {\mathbf {a} }}_{i}} 。請注意, F {\displaystyle \mathbf {F} } 和 G {\displaystyle \mathbf {G} } 都是使用表面基向量表示的,但 F × G {\displaystyle \mathbf {F} \times \mathbf {G} } 使用的是位移基向量。
為了節省空間,符號 ( j ; k j ) {\displaystyle (j;k_{j})} , ( j ; c j ) {\displaystyle (j;c_{j})} 和 ( j ; k j Δ c j ) {\displaystyle (j;k_{j}\Delta c_{j})} 將從各種術語中省略。但是,給定一個量 Q {\displaystyle Q} 和一個任意 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,符號 [ Q ] − i {\displaystyle [Q]_{-i}} 將表示透過沿由 i {\displaystyle i} 索引的維度後退一步,相鄰單元格中的量。該單元格將被稱為當前單元格的 − i {\displaystyle -i} 鄰居。
給定一個由向量場 J = ∑ i J i a ^ i {\displaystyle \mathbf {J} =\sum _{i}J_{i}{\hat {\mathbf {a} }}_{i}} 表示的多路徑 C {\displaystyle \mathbf {C} } ,表示端點的標量場可以按如下方式計算
以下計算適用於每個單元格
對於每個 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,分配給 C i {\displaystyle C_{i}} 的權重由 C {\displaystyle \mathbf {C} } 計算如下: Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ J i {\displaystyle \Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V\cdot J_{i}} 是當前單元格包含的總位移的 a ^ i {\displaystyle {\hat {\mathbf {a} }}_{i}} 分量。計算分配給 C i {\displaystyle C_{i}} 的權重要求此位移分佈在 C i {\displaystyle C_{i}} 的長度上: Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ J i Δ c i ⋅ l i = V l i ⋅ Δ c i + 1 Δ c i + 2 ⋅ J i {\displaystyle {\frac {\Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V\cdot J_{i}}{\Delta c_{i}\cdot l_{i}}}={\frac {V}{l_{i}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot J_{i}} .
對於每個 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,路徑 C i {\displaystyle C_{i}} 對當前單元格的晶格點貢獻一個權重 + V l i ⋅ Δ c i + 1 Δ c i + 2 ⋅ J i {\displaystyle +{\frac {V}{l_{i}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot J_{i}} ,路徑 [ C i ] − i {\displaystyle [C_{i}]_{-i}} 對當前單元格的晶格點貢獻一個權重 − [ V l i ⋅ Δ c i + 1 Δ c i + 2 ⋅ J i ] − i {\displaystyle -\left[{\frac {V}{l_{i}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot J_{i}\right]_{-i}} 。
當前單元格的晶格點的總權重為 ∑ i ( + V l i ⋅ Δ c i + 1 Δ c i + 2 ⋅ J i − [ V l i ⋅ Δ c i + 1 Δ c i + 2 ⋅ J i ] − i ) {\displaystyle \sum _{i}\left(+{\frac {V}{l_{i}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot J_{i}-\left[{\frac {V}{l_{i}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot J_{i}\right]_{-i}\right)} ≈ ∑ i Δ c i ∂ ∂ c i ( V l i ⋅ Δ c i + 1 Δ c i + 2 ⋅ J i ) {\displaystyle \approx \sum _{i}\Delta c_{i}{\frac {\partial }{\partial c_{i}}}\left({\frac {V}{l_{i}}}\cdot \Delta c_{i+1}\Delta c_{i+2}\cdot J_{i}\right)} = Δ c 1 Δ c 2 Δ c 3 ∑ i ∂ ∂ c i ( V l i ⋅ J i ) {\displaystyle =\Delta c_{1}\Delta c_{2}\Delta c_{3}\sum _{i}{\frac {\partial }{\partial c_{i}}}\left({\frac {V}{l_{i}}}\cdot J_{i}\right)} .
將分配給當前晶格點的權重分散到當前單元格的體積上得到: ∇ ⋅ J = 1 Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ Δ c 1 Δ c 2 Δ c 3 ∑ i ∂ ∂ c i ( V l i ⋅ J i ) {\displaystyle \nabla \cdot \mathbf {J} ={\frac {1}{\Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V}}\cdot \Delta c_{1}\Delta c_{2}\Delta c_{3}\sum _{i}{\frac {\partial }{\partial c_{i}}}\left({\frac {V}{l_{i}}}\cdot J_{i}\right)} = 1 V ∑ i ∂ ∂ c i ( V l i ⋅ J i ) {\displaystyle ={\frac {1}{V}}\sum _{i}{\frac {\partial }{\partial c_{i}}}\left({\frac {V}{l_{i}}}\cdot J_{i}\right)} .
因此: ∇ ⋅ J = 1 V ∑ i ∂ ∂ c i ( V l i ⋅ J i ) {\displaystyle \nabla \cdot \mathbf {J} ={\frac {1}{V}}\sum _{i}{\frac {\partial }{\partial c_{i}}}\left({\frac {V}{l_{i}}}\cdot J_{i}\right)} . 請注意 J {\displaystyle \mathbf {J} } 是使用位移基向量表示的。
為了節省空間,符號 ( j ; k j ) {\displaystyle (j;k_{j})} , ( j ; c j ) {\displaystyle (j;c_{j})} 和 ( j ; k j Δ c j ) {\displaystyle (j;k_{j}\Delta c_{j})} 將從各種術語中省略。但是,給定一個量 Q {\displaystyle Q} 和一個任意 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,符號 [ Q ] − i {\displaystyle [Q]_{-i}} 將表示透過沿由 i {\displaystyle i} 索引的維度後退一步,相鄰單元格中的量。該單元格將被稱為當前單元格的 − i {\displaystyle -i} 鄰居。
給定一個由向量場表示的多曲面 S {\displaystyle \mathbf {S} } F = ∑ i F i a ^ i {\displaystyle \mathbf {F} =\sum _{i}F_{i}{\hat {\mathbf {a} }}^{i}} ,可以按如下方式計算表示逆時針邊界的向量場
以下計算適用於每個單元格
對於每個 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , S {\displaystyle \mathbf {S} } 分配給 σ i {\displaystyle \sigma _{i}} 的權重計算如下: Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ F i {\displaystyle \Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V\cdot F_{i}} 是當前單元格包含的總表面向量的 a ^ i {\displaystyle {\hat {\mathbf {a} }}^{i}} 分量。計算分配給 σ i {\displaystyle \sigma _{i}} 的權重需要將此表面向量分佈在 σ i {\displaystyle \sigma _{i}} 的面積上: Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ F i Δ c i + 1 Δ c i + 2 ⋅ A i = V A i ⋅ Δ c i ⋅ F i {\displaystyle {\frac {\Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V\cdot F_{i}}{\Delta c_{i+1}\Delta c_{i+2}\cdot A_{i}}}={\frac {V}{A_{i}}}\cdot \Delta c_{i}\cdot F_{i}} 。
For each i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , surfaces that contain path C i {\displaystyle C_{i}} as part of their boundary include σ i + 1 {\displaystyle \sigma _{i+1}} , [ σ i + 1 ] − ( i + 2 ) {\displaystyle [\sigma _{i+1}]_{-(i+2)}} , σ i + 2 {\displaystyle \sigma _{i+2}} , and [ σ i + 2 ] − ( i + 1 ) {\displaystyle [\sigma _{i+2}]_{-(i+1)}} . C i {\displaystyle C_{i}} receives a mass of − V A i + 1 ⋅ Δ c i + 1 ⋅ F i + 1 {\displaystyle -{\frac {V}{A_{i+1}}}\cdot \Delta c_{i+1}\cdot F_{i+1}} from σ i + 1 {\displaystyle \sigma _{i+1}} ; a mass of + [ V A i + 1 ⋅ Δ c i + 1 ⋅ F i + 1 ] − ( i + 2 ) {\displaystyle +\left[{\frac {V}{A_{i+1}}}\cdot \Delta c_{i+1}\cdot F_{i+1}\right]_{-(i+2)}} from [ σ i + 1 ] − ( i + 2 ) {\displaystyle [\sigma _{i+1}]_{-(i+2)}} ; a mass of + V A i + 2 ⋅ Δ c i + 2 ⋅ F i + 2 {\displaystyle +{\frac {V}{A_{i+2}}}\cdot \Delta c_{i+2}\cdot F_{i+2}} from σ i + 2 {\displaystyle \sigma _{i+2}} ; and a mass of − [ V A i + 2 ⋅ Δ c i + 2 ⋅ F i + 2 ] − ( i + 1 ) {\displaystyle -\left[{\frac {V}{A_{i+2}}}\cdot \Delta c_{i+2}\cdot F_{i+2}\right]_{-(i+1)}} from [ σ i + 2 ] − ( i + 1 ) {\displaystyle [\sigma _{i+2}]_{-(i+1)}} . The total mass assigned to C i {\displaystyle C_{i}} is − V A i + 1 ⋅ Δ c i + 1 ⋅ F i + 1 + [ V A i + 1 ⋅ Δ c i + 1 ⋅ F i + 1 ] − ( i + 2 ) + V A i + 2 ⋅ Δ c i + 2 ⋅ F i + 2 − [ V A i + 2 ⋅ Δ c i + 2 ⋅ F i + 2 ] − ( i + 1 ) {\displaystyle -{\frac {V}{A_{i+1}}}\cdot \Delta c_{i+1}\cdot F_{i+1}+\left[{\frac {V}{A_{i+1}}}\cdot \Delta c_{i+1}\cdot F_{i+1}\right]_{-(i+2)}+{\frac {V}{A_{i+2}}}\cdot \Delta c_{i+2}\cdot F_{i+2}-\left[{\frac {V}{A_{i+2}}}\cdot \Delta c_{i+2}\cdot F_{i+2}\right]_{-(i+1)}} ≈ − Δ c i + 2 ∂ ∂ c i + 2 ( V A i + 1 ⋅ Δ c i + 1 ⋅ F i + 1 ) + Δ c i + 1 ⋅ ∂ ∂ c i + 1 ( V A i + 2 ⋅ Δ c i + 2 ⋅ F i + 2 ) {\displaystyle \approx -\Delta c_{i+2}{\frac {\partial }{\partial c_{i+2}}}\left({\frac {V}{A_{i+1}}}\cdot \Delta c_{i+1}\cdot F_{i+1}\right)+\Delta c_{i+1}\cdot {\frac {\partial }{\partial c_{i+1}}}\left({\frac {V}{A_{i+2}}}\cdot \Delta c_{i+2}\cdot F_{i+2}\right)} = Δ c i + 1 Δ c i + 2 ( ∂ ∂ c i + 1 ( V A i + 2 ⋅ F i + 2 ) − ∂ ∂ c i + 2 ( V A i + 1 ⋅ F i + 1 ) ) {\displaystyle =\Delta c_{i+1}\Delta c_{i+2}\left({\frac {\partial }{\partial c_{i+1}}}\left({\frac {V}{A_{i+2}}}\cdot F_{i+2}\right)-{\frac {\partial }{\partial c_{i+2}}}\left({\frac {V}{A_{i+1}}}\cdot F_{i+1}\right)\right)} .
將每個 C i {\displaystyle C_{i}} 生成的位移分佈到當前單元的體積上,得到: ∇ × F = ∑ i Δ c i ⋅ l i ⋅ a ^ i Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ Δ c i + 1 Δ c i + 2 ( ∂ ∂ c i + 1 ( V A i + 2 ⋅ F i + 2 ) − ∂ ∂ c i + 2 ( V A i + 1 ⋅ F i + 1 ) ) {\displaystyle \nabla \times \mathbf {F} =\sum _{i}{\frac {\Delta c_{i}\cdot l_{i}\cdot {\hat {\mathbf {a} }}_{i}}{\Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V}}\cdot \Delta c_{i+1}\Delta c_{i+2}\left({\frac {\partial }{\partial c_{i+1}}}\left({\frac {V}{A_{i+2}}}\cdot F_{i+2}\right)-{\frac {\partial }{\partial c_{i+2}}}\left({\frac {V}{A_{i+1}}}\cdot F_{i+1}\right)\right)} = ∑ i l i V ( ∂ ∂ c i + 1 ( V A i + 2 ⋅ F i + 2 ) − ∂ ∂ c i + 2 ( V A i + 1 ⋅ F i + 1 ) ) a ^ i {\displaystyle =\sum _{i}{\frac {l_{i}}{V}}\left({\frac {\partial }{\partial c_{i+1}}}\left({\frac {V}{A_{i+2}}}\cdot F_{i+2}\right)-{\frac {\partial }{\partial c_{i+2}}}\left({\frac {V}{A_{i+1}}}\cdot F_{i+1}\right)\right){\hat {\mathbf {a} }}_{i}} .
因此: ∇ × F = ∑ i l i V ( ∂ ∂ c i + 1 ( V A i + 2 ⋅ F i + 2 ) − ∂ ∂ c i + 2 ( V A i + 1 ⋅ F i + 1 ) ) a ^ i {\displaystyle \nabla \times \mathbf {F} =\sum _{i}{\frac {l_{i}}{V}}\left({\frac {\partial }{\partial c_{i+1}}}\left({\frac {V}{A_{i+2}}}\cdot F_{i+2}\right)-{\frac {\partial }{\partial c_{i+2}}}\left({\frac {V}{A_{i+1}}}\cdot F_{i+1}\right)\right){\hat {\mathbf {a} }}_{i}} 。請注意 F {\displaystyle \mathbf {F} } 使用表面基向量表示,但 ∇ × F {\displaystyle \nabla \times \mathbf {F} } 使用位移基向量表示。
為了節省空間,符號 ( j ; k j ) {\displaystyle (j;k_{j})} , ( j ; c j ) {\displaystyle (j;c_{j})} 和 ( j ; k j Δ c j ) {\displaystyle (j;k_{j}\Delta c_{j})} 將從各種術語中省略。但是,給定一個量 Q {\displaystyle Q} 和一個任意 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,符號 [ Q ] − i {\displaystyle [Q]_{-i}} 將表示透過沿由 i {\displaystyle i} 索引的維度後退一步,相鄰單元格中的量。該單元格將被稱為當前單元格的 − i {\displaystyle -i} 鄰居。
給定一個由標量場 U {\displaystyle U} 表示的多體積 U {\displaystyle \mathbf {U} } ,可以按照如下方法計算表示內向表面的向量場:
以下計算適用於每個單元格
細胞的體積 Ω {\displaystyle \Omega } 的權重為 U {\displaystyle U} 。
對於每個 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} ,表面 σ i {\displaystyle \sigma _{i}} 從當前細胞接收 U {\displaystyle U} 的權重,並從當前細胞的 − i {\displaystyle -i} 鄰居接收 − [ U ] − i {\displaystyle -[U]_{-i}} 的權重。總權重簡單地為 U − [ U ] − i ≈ Δ c i ∂ U ∂ c i {\displaystyle U-[U]_{-i}\approx \Delta c_{i}{\frac {\partial U}{\partial c_{i}}}} 。將每個 σ i {\displaystyle \sigma _{i}} 生成的表面向量分佈在當前細胞的體積上,得到: ∇ U = ∑ i Δ c i + 1 Δ c i + 2 ⋅ A i ⋅ a ^ i Δ c 1 Δ c 2 Δ c 3 ⋅ V ⋅ Δ c i ∂ U ∂ c i {\displaystyle \nabla U=\sum _{i}{\frac {\Delta c_{i+1}\Delta c_{i+2}\cdot A_{i}\cdot {\hat {\mathbf {a} }}^{i}}{\Delta c_{1}\Delta c_{2}\Delta c_{3}\cdot V}}\cdot \Delta c_{i}{\frac {\partial U}{\partial c_{i}}}} = ∑ i A i V ∂ U ∂ c i a ^ i {\displaystyle =\sum _{i}{\frac {A_{i}}{V}}{\frac {\partial U}{\partial c_{i}}}{\hat {\mathbf {a} }}^{i}} 。
因此: ∇ U = ∑ i A i V ∂ U ∂ c i a ^ i {\displaystyle \nabla U=\sum _{i}{\frac {A_{i}}{V}}{\frac {\partial U}{\partial c_{i}}}{\hat {\mathbf {a} }}^{i}} 。注意, ∇ U {\displaystyle \nabla U} 使用表面基向量。
給定多路徑 J = ∑ i J i a ^ i {\displaystyle \mathbf {J} =\sum _{i}J_{i}{\hat {\mathbf {a} }}_{i}} 和多表面 F = ∑ i F i a ^ i {\displaystyle \mathbf {F} =\sum _{i}F_{i}{\hat {\mathbf {a} }}^{i}} , J {\displaystyle \mathbf {J} } 與 F {\displaystyle \mathbf {F} } 的交點是多點 J ⋅ F = ∑ i V l i A i J i F i {\displaystyle \mathbf {J} \cdot \mathbf {F} =\sum _{i}{\frac {V}{l_{i}A_{i}}}J_{i}F_{i}} .
給定多表面 F = ∑ i F i a ^ i {\displaystyle \mathbf {F} =\sum _{i}F_{i}{\hat {\mathbf {a} }}^{i}} 和 G = ∑ i G i a ^ i {\displaystyle \mathbf {G} =\sum _{i}G_{i}{\hat {\mathbf {a} }}^{i}} , F {\displaystyle \mathbf {F} } 與 G {\displaystyle \mathbf {G} } 的交點是多路徑 F × G = ∑ i l i V A i + 1 A i + 2 ( F i + 1 G i + 2 − F i + 2 G i + 1 ) a ^ i {\displaystyle \mathbf {F} \times \mathbf {G} =\sum _{i}{\frac {l_{i}V}{A_{i+1}A_{i+2}}}(F_{i+1}G_{i+2}-F_{i+2}G_{i+1}){\hat {\mathbf {a} }}_{i}} .
給定多路徑 J = ∑ i J i a ^ i {\displaystyle \mathbf {J} =\sum _{i}J_{i}{\hat {\mathbf {a} }}_{i}} , J {\displaystyle \mathbf {J} } 的端點是多點 ∇ ⋅ J = ∑ i 1 V ∂ ∂ c i ( V l i J i ) {\displaystyle \nabla \cdot \mathbf {J} =\sum _{i}{\frac {1}{V}}{\frac {\partial }{\partial c_{i}}}\left({\frac {V}{l_{i}}}J_{i}\right)} .
給定多表面 F = ∑ i F i a ^ i {\displaystyle \mathbf {F} =\sum _{i}F_{i}{\hat {\mathbf {a} }}^{i}} , F {\displaystyle \mathbf {F} } 的逆時針邊界是多路徑 ∇ × F = ∑ i l i V ( ∂ ∂ c i + 1 ( V A i + 2 F i + 2 ) − ∂ ∂ c i + 2 ( V A i + 1 F i + 1 ) ) a ^ i {\displaystyle \nabla \times \mathbf {F} =\sum _{i}{\frac {l_{i}}{V}}\left({\frac {\partial }{\partial c_{i+1}}}\left({\frac {V}{A_{i+2}}}F_{i+2}\right)-{\frac {\partial }{\partial c_{i+2}}}\left({\frac {V}{A_{i+1}}}F_{i+1}\right)\right){\hat {\mathbf {a} }}_{i}} .
給定多體積 U {\displaystyle U} , U {\displaystyle U} 的內向表面是多表面 ∇ U = ∑ i A i V ∂ U ∂ c i a ^ i {\displaystyle \nabla U=\sum _{i}{\frac {A_{i}}{V}}{\frac {\partial U}{\partial c_{i}}}{\hat {\mathbf {a} }}^{i}} .
在位移基向量 { a ^ 1 , a ^ 2 , a ^ 3 } {\displaystyle \{{\hat {\mathbf {a} }}_{1},{\hat {\mathbf {a} }}_{2},{\hat {\mathbf {a} }}_{3}\}} 彼此正交(垂直)的特殊情況下,
表面基向量與位移基向量相同: ∀ i ∈ { 1 , 2 , 3 } : a ^ i = a ^ i {\displaystyle \forall i\in \{1,2,3\}:{\hat {\mathbf {a} }}^{i}={\hat {\mathbf {a} }}_{i}} .
對於每個 i ∈ { 1 , 2 , 3 } {\displaystyle i\in \{1,2,3\}} , A i = l i + 1 l i + 2 {\displaystyle A_{i}=l_{i+1}l_{i+2}} .
V = l 1 l 2 l 3 {\displaystyle V=l_{1}l_{2}l_{3}} .
上述公式簡化為
( ∑ i J i a ^ i ) ⋅ ( ∑ i F i a ^ i ) = ∑ i J i F i {\displaystyle \left(\sum _{i}J_{i}{\hat {\mathbf {a} }}_{i}\right)\cdot \left(\sum _{i}F_{i}{\hat {\mathbf {a} }}^{i}\right)=\sum _{i}J_{i}F_{i}} .
( ∑ i F i a ^ i ) × ( ∑ i G i a ^ i ) = ∑ i ( F i + 1 G i + 2 − F i + 2 G i + 1 ) a ^ i {\displaystyle \left(\sum _{i}F_{i}{\hat {\mathbf {a} }}^{i}\right)\times \left(\sum _{i}G_{i}{\hat {\mathbf {a} }}^{i}\right)=\sum _{i}(F_{i+1}G_{i+2}-F_{i+2}G_{i+1}){\hat {\mathbf {a} }}_{i}} .
∇ ⋅ ( ∑ i J i a ^ i ) = ∑ i 1 l 1 l 2 l 3 ∂ ∂ c .
∇ × ( ∑ i F i a ^ i ) = ∑ i 1 l i + 1 l i + 2 ( ∂ ∂ c i + 1 ( l i + 2 F i + 2 ) − ∂ ∂ c i + 2 ( l i + 1 F i + 1 ) ) a ^ i {\displaystyle \nabla \times \left(\sum _{i}F_{i}{\hat {\mathbf {a} }}^{i}\right)=\sum _{i}{\frac {1}{l_{i+1}l_{i+2}}}\left({\frac {\partial }{\partial c_{i+1}}}(l_{i+2}F_{i+2})-{\frac {\partial }{\partial c_{i+2}}}\left(l_{i+1}F_{i+1}\right)\right){\hat {\mathbf {a} }}_{i}} .
∇ U = ∑ i 1 l i ∂ U ∂ c i a ^ i {\displaystyle \nabla U=\sum _{i}{\frac {1}{l_{i}}}{\frac {\partial U}{\partial c_{i}}}{\hat {\mathbf {a} }}^{i}} .
對於笛卡爾座標系, c 1 = x {\displaystyle c_{1}=x} , c 2 = y {\displaystyle c_{2}=y} , c 3 = z {\displaystyle c_{3}=z} ,以及 a ^ 1 = a ^ 1 = x ^ {\displaystyle {\hat {\mathbf {a} }}^{1}={\hat {\mathbf {a} }}_{1}={\hat {\mathbf {x} }}} , a ^ 2 = a ^ 2 = y ^ {\displaystyle {\hat {\mathbf {a} }}^{2}={\hat {\mathbf {a} }}_{2}={\hat {\mathbf {y} }}} , a ^ 3 = a ^ 3 = z ^ {\displaystyle {\hat {\mathbf {a} }}^{3}={\hat {\mathbf {a} }}_{3}={\hat {\mathbf {z} }}} ,以及 l 1 = 1 {\displaystyle l_{1}=1} , l 2 = 1 {\displaystyle l_{2}=1} , l 3 = 1 {\displaystyle l_{3}=1} 。因此
( J x x ^ + J y y ^ + J z z ^ ) ⋅ ( F x x ^ + F y y ^ + F z z ^ ) = J x F x + J y F y + J z F z {\displaystyle (J_{x}{\hat {\mathbf {x} }}+J_{y}{\hat {\mathbf {y} }}+J_{z}{\hat {\mathbf {z} }})\cdot (F_{x}{\hat {\mathbf {x} }}+F_{y}{\hat {\mathbf {y} }}+F_{z}{\hat {\mathbf {z} }})=J_{x}F_{x}+J_{y}F_{y}+J_{z}F_{z}} .
( F x x ^ + F y y ^ + F z z ^ ) × ( G x x ^ + G y y ^ + G z z ^ ) = ( F y G z − F z G y ) x ^ + ( F z G x − F x G z ) y ^ + ( F x G y − F y G x ) z ^ {\displaystyle (F_{x}{\hat {\mathbf {x} }}+F_{y}{\hat {\mathbf {y} }}+F_{z}{\hat {\mathbf {z} }})\times (G_{x}{\hat {\mathbf {x} }}+G_{y}{\hat {\mathbf {y} }}+G_{z}{\hat {\mathbf {z} }})=(F_{y}G_{z}-F_{z}G_{y}){\hat {\mathbf {x} }}+(F_{z}G_{x}-F_{x}G_{z}){\hat {\mathbf {y} }}+(F_{x}G_{y}-F_{y}G_{x}){\hat {\mathbf {z} }}} .
∇ ⋅ ( J x x ^ + J y y ^ + J z z ^ ) = ∂ J x ∂ x + ∂ J y ∂ y + ∂ J z ∂ z {\displaystyle \nabla \cdot (J_{x}{\hat {\mathbf {x} }}+J_{y}{\hat {\mathbf {y} }}+J_{z}{\hat {\mathbf {z} }})={\frac {\partial J_{x}}{\partial x}}+{\frac {\partial J_{y}}{\partial y}}+{\frac {\partial J_{z}}{\partial z}}} ∇ × ( F x x ^ + F y y ^ + F z z ^ ) = ( ∂ F z ∂ y − ∂ F y ∂ z ) x ^ + ( ∂ F x ∂ z − ∂ F z ∂ x ) y ^ + ( ∂ F y ∂ x − ∂ F x ∂ y ) z ^ {\displaystyle \nabla \times (F_{x}{\hat {\mathbf {x} }}+F_{y}{\hat {\mathbf {y} }}+F_{z}{\hat {\mathbf {z} }})=\left({\frac {\partial F_{z}}{\partial y}}-{\frac {\partial F_{y}}{\partial z}}\right){\hat {\mathbf {x} }}+\left({\frac {\partial F_{x}}{\partial z}}-{\frac {\partial F_{z}}{\partial x}}\right){\hat {\mathbf {y} }}+\left({\frac {\partial F_{y}}{\partial x}}-{\frac {\partial F_{x}}{\partial y}}\right){\hat {\mathbf {z} }}} .
∇ U = ∂ U ∂ x x ^ + ∂ U ∂ y y ^ + ∂ U ∂ z z ^ {\displaystyle \nabla U={\frac {\partial U}{\partial x}}{\hat {\mathbf {x} }}+{\frac {\partial U}{\partial y}}{\hat {\mathbf {y} }}+{\frac {\partial U}{\partial z}}{\hat {\mathbf {z} }}} .
對於柱座標系, c 1 = ρ {\displaystyle c_{1}=\rho } , c 2 = ϕ {\displaystyle c_{2}=\phi } , c 3 = z {\displaystyle c_{3}=z} ,並且 a ^ 1 = a ^ 1 = ρ ^ {\displaystyle {\hat {\mathbf {a} }}^{1}={\hat {\mathbf {a} }}_{1}={\hat {\mathbf {\rho } }}} , a ^ 2 = a ^ 2 = ϕ ^ {\displaystyle {\hat {\mathbf {a} }}^{2}={\hat {\mathbf {a} }}_{2}={\hat {\mathbf {\phi } }}} , a ^ 3 = a ^ 3 = z ^ {\displaystyle {\hat {\mathbf {a} }}^{3}={\hat {\mathbf {a} }}_{3}={\hat {\mathbf {z} }}} ,並且 l 1 = 1 {\displaystyle l_{1}=1} , l 2 = ρ {\displaystyle l_{2}=\rho } , l 3 = 1 {\displaystyle l_{3}=1} 。因此
( J ρ ρ ^ + J ϕ ϕ ^ + J z z ^ ) ⋅ ( F ρ ρ ^ + F ϕ ϕ ^ + F z z ^ ) = J ρ F ρ + J ϕ F ϕ + J z F z {\displaystyle (J_{\rho }{\hat {\mathbf {\rho } }}+J_{\phi }{\hat {\mathbf {\phi } }}+J_{z}{\hat {\mathbf {z} }})\cdot (F_{\rho }{\hat {\mathbf {\rho } }}+F_{\phi }{\hat {\mathbf {\phi } }}+F_{z}{\hat {\mathbf {z} }})=J_{\rho }F_{\rho }+J_{\phi }F_{\phi }+J_{z}F_{z}} .
( F ρ ρ ^ + F ϕ ϕ ^ + F z z ^ ) × ( F ρ ρ ^ + F ϕ ϕ ^ + F z z ^ ) = ( F ϕ G z − F z G ϕ ) ρ ^ + ( F z G ρ − F ρ G z ) ϕ ^ + ( F ρ G ϕ − F ϕ G ρ ) z ^ {\displaystyle (F_{\rho }{\hat {\mathbf {\rho } }}+F_{\phi }{\hat {\mathbf {\phi } }}+F_{z}{\hat {\mathbf {z} }})\times (F_{\rho }{\hat {\mathbf {\rho } }}+F_{\phi }{\hat {\mathbf {\phi } }}+F_{z}{\hat {\mathbf {z} }})=(F_{\phi }G_{z}-F_{z}G_{\phi }){\hat {\mathbf {\rho } }}+(F_{z}G_{\rho }-F_{\rho }G_{z}){\hat {\mathbf {\phi } }}+(F_{\rho }G_{\phi }-F_{\phi }G_{\rho }){\hat {\mathbf {z} }}} ∇ ⋅ ( J ρ ρ ^ + J ϕ ϕ ^ + J z z ^ ) = 1 ρ ( ∂ ∂ ρ ( ρ J ρ ) + ∂ F ϕ ∂ ϕ + ∂ ∂ z ( ρ F z ) ) {\displaystyle \nabla \cdot (J_{\rho }{\hat {\mathbf {\rho } }}+J_{\phi }{\hat {\mathbf {\phi } }}+J_{z}{\hat {\mathbf {z} }})={\frac {1}{\rho }}\left({\frac {\partial }{\partial \rho }}(\rho J_{\rho })+{\frac {\partial F_{\phi }}{\partial \phi }}+{\frac {\partial }{\partial z}}(\rho F_{z})\right)} .
∇ × ( F ρ ρ ^ + F ϕ ϕ ^ + F z z ^ ) = 1 ρ ( ∂ F z ∂ ϕ − ∂ ∂ z ( ρ F ϕ ) ) ρ ^ + ( ∂ F ρ ∂ z − ∂ F z ∂ ρ ) ϕ ^ + 1 ρ ( ∂ ∂ ρ ( ρ F ϕ ) − ∂ F ρ ∂ ϕ ) z ^ {\displaystyle \nabla \times (F_{\rho }{\hat {\mathbf {\rho } }}+F_{\phi }{\hat {\mathbf {\phi } }}+F_{z}{\hat {\mathbf {z} }})={\frac {1}{\rho }}\left({\frac {\partial F_{z}}{\partial \phi }}-{\frac {\partial }{\partial z}}(\rho F_{\phi })\right){\hat {\mathbf {\rho } }}+\left({\frac {\partial F_{\rho }}{\partial z}}-{\frac {\partial F_{z}}{\partial \rho }}\right){\hat {\mathbf {\phi } }}+{\frac {1}{\rho }}\left({\frac {\partial }{\partial \rho }}(\rho F_{\phi })-{\frac {\partial F_{\rho }}{\partial \phi }}\right){\hat {\mathbf {z} }}} .
∇ U = ∂ U ∂ ρ ρ ^ + 1 ρ ∂ U ∂ ϕ ϕ ^ + ∂ U ∂ z z ^ {\displaystyle \nabla U={\frac {\partial U}{\partial \rho }}{\hat {\mathbf {\rho } }}+{\frac {1}{\rho }}{\frac {\partial U}{\partial \phi }}{\hat {\mathbf {\phi } }}+{\frac {\partial U}{\partial z}}{\hat {\mathbf {z} }}} .
對於球座標系, c 1 = r {\displaystyle c_{1}=r} , c 2 = θ {\displaystyle c_{2}=\theta } , c 3 = ϕ {\displaystyle c_{3}=\phi } ,並且 a ^ 1 = a ^ 1 = r ^ {\displaystyle {\hat {\mathbf {a} }}^{1}={\hat {\mathbf {a} }}_{1}={\hat {\mathbf {r} }}} , a ^ 2 = a ^ 2 = θ ^ {\displaystyle {\hat {\mathbf {a} }}^{2}={\hat {\mathbf {a} }}_{2}={\hat {\mathbf {\theta } }}} , a ^ 3 = a ^ 3 = ϕ ^ {\displaystyle {\hat {\mathbf {a} }}^{3}={\hat {\mathbf {a} }}_{3}={\hat {\mathbf {\phi } }}} ,以及 l 1 = 1 {\displaystyle l_{1}=1} , l 2 = r {\displaystyle l_{2}=r} , l 3 = r sin θ {\displaystyle l_{3}=r\sin \theta } 。因此
( J r r ^ + J θ θ ^ + J ϕ ϕ ^ ) ⋅ ( F r r ^ + F θ θ ^ + F ϕ ϕ ^ ) = J r F r + J θ F θ + J ϕ F ϕ {\displaystyle (J_{r}{\hat {\mathbf {r} }}+J_{\theta }{\hat {\mathbf {\theta } }}+J_{\phi }{\hat {\mathbf {\phi } }})\cdot (F_{r}{\hat {\mathbf {r} }}+F_{\theta }{\hat {\mathbf {\theta } }}+F_{\phi }{\hat {\mathbf {\phi } }})=J_{r}F_{r}+J_{\theta }F_{\theta }+J_{\phi }F_{\phi }} .
( F r r ^ + F θ θ ^ + F ϕ ϕ ^ ) × ( G r r ^ + G θ θ ^ + G ϕ ϕ ^ ) = ( F θ G ϕ − F ϕ G θ ) r ^ + ( F ϕ G r − F r G ϕ ) θ ^ + ( F r G θ − F θ G r ) ϕ ^ {\displaystyle (F_{r}{\hat {\mathbf {r} }}+F_{\theta }{\hat {\mathbf {\theta } }}+F_{\phi }{\hat {\mathbf {\phi } }})\times (G_{r}{\hat {\mathbf {r} }}+G_{\theta }{\hat {\mathbf {\theta } }}+G_{\phi }{\hat {\mathbf {\phi } }})=(F_{\theta }G_{\phi }-F_{\phi }G_{\theta }){\hat {\mathbf {r} }}+(F_{\phi }G_{r}-F_{r}G_{\phi }){\hat {\mathbf {\theta } }}+(F_{r}G_{\theta }-F_{\theta }G_{r}){\hat {\mathbf {\phi } }}} .
∇ ⋅ ( J r r ^ + J θ θ ^ + J ϕ ϕ ^ ) = 1 r 2 sin θ ( ∂ ∂ r ( r 2 sin θ J r ) + ∂ ∂ θ ( r sin θ J θ ) + ∂ ∂ ϕ ( r F ϕ ) ) {\displaystyle \nabla \cdot (J_{r}{\hat {\mathbf {r} }}+J_{\theta }{\hat {\mathbf {\theta } }}+J_{\phi }{\hat {\mathbf {\phi } }})={\frac {1}{r^{2}\sin \theta }}\left({\frac {\partial }{\partial r}}(r^{2}\sin \theta J_{r})+{\frac {\partial }{\partial \theta }}(r\sin \theta J_{\theta })+{\frac {\partial }{\partial \phi }}(rF_{\phi })\right)} .
∇ × ( F r r ^ + F θ θ ^ + F ϕ ϕ ^ ) = 1 r 2 sin θ ( ∂ ∂ θ ( r sin θ F ϕ ) − ∂ ∂ ϕ ( r F θ ) ) r ^ + 1 r sin θ ( ∂ F r ∂ ϕ − ∂ ∂ r ( r sin θ F ϕ ) ) θ ^ + 1 r ( ∂ ∂ r ( r F θ ) − ∂ F r ∂ θ ) ϕ ^ {\displaystyle \nabla \times (F_{r}{\hat {\mathbf {r} }}+F_{\theta }{\hat {\mathbf {\theta } }}+F_{\phi }{\hat {\mathbf {\phi } }})={\frac {1}{r^{2}\sin \theta }}\left({\frac {\partial }{\partial \theta }}(r\sin \theta F_{\phi })-{\frac {\partial }{\partial \phi }}(rF_{\theta })\right){\hat {\mathbf {r} }}+{\frac {1}{r\sin \theta }}\left({\frac {\partial F_{r}}{\partial \phi }}-{\frac {\partial }{\partial r}}(r\sin \theta F_{\phi })\right){\hat {\mathbf {\theta } }}+{\frac {1}{r}}\left({\frac {\partial }{\partial r}}(rF_{\theta })-{\frac {\partial F_{r}}{\partial \theta }}\right){\hat {\mathbf {\phi } }}} .
∇ U = ∂ U ∂ r r ^ + 1 r ∂ U ∂ θ θ ^ + 1 r sin θ ∂ U ∂ ϕ ϕ ^ {\displaystyle \nabla U={\frac {\partial U}{\partial r}}{\hat {\mathbf {r} }}+{\frac {1}{r}}{\frac {\partial U}{\partial \theta }}{\hat {\mathbf {\theta } }}+{\frac {1}{r\sin \theta }}{\frac {\partial U}{\partial \phi }}{\hat {\mathbf {\phi } }}} .
許多與向量微積分相關的恆等式可以從檢查路徑-體積交點和表面-表面交點的端點推匯出來。
多路徑與多體積交點的端點有兩個來源:多路徑中原本就在多體積內的端點,以及路徑進入和離開體積生成的端點。
從一個多路徑 C {\displaystyle \mathbf {C} } 開始,用向量場 J {\displaystyle \mathbf {J} } 表示,以及一個多體積 U {\displaystyle \mathbf {U} } ,用標量場 U {\displaystyle U} 表示。交叉點 C ∩ U {\displaystyle \mathbf {C} \cap \mathbf {U} } 用向量場 J U {\displaystyle \mathbf {J} U} 表示。
Any time a path C {\displaystyle C} with weight w 1 {\displaystyle w_{1}} starts in a volume Ω {\displaystyle \Omega } with weight w 2 {\displaystyle w_{2}} , the intersection C ∩ U {\displaystyle \mathbf {C} \cap \mathbf {U} } gains an endpoint at the starting point of C {\displaystyle C} with weight w 1 w 2 {\displaystyle w_{1}w_{2}} . Any time a path C {\displaystyle C} with weight w 1 {\displaystyle w_{1}} finishes in a volume Ω {\displaystyle \Omega } with weight w 2 {\displaystyle w_{2}} , the intersection C ∩ U {\displaystyle \mathbf {C} \cap \mathbf {U} } gains an endpoint at the finishing point of C {\displaystyle C} with weight − w 1 w 2 {\displaystyle -w_{1}w_{2}} . The endpoints for C ∩ U {\displaystyle \mathbf {C} \cap \mathbf {U} } that are generated when paths from C {\displaystyle \mathbf {C} } start or finish in volumes from U {\displaystyle \mathbf {U} } is the intersection of the endpoints of C {\displaystyle \mathbf {C} } with multi-volume U {\displaystyle \mathbf {U} } . This contributes the term ( ∇ ⋅ J ) U {\displaystyle (\nabla \cdot \mathbf {J} )U} to ∇ ⋅ ( J U ) {\displaystyle \nabla \cdot (\mathbf {J} U)} .
每當一條帶權重為 w 1 {\displaystyle w_{1}} 的路徑 C {\displaystyle C} 進入一個帶權重為 w 2 {\displaystyle w_{2}} 的體積 Ω {\displaystyle \Omega } 時,交集 C ∩ U {\displaystyle \mathbf {C} \cap \mathbf {U} } 在進入點處獲得一個帶權重為 w 1 w 2 {\displaystyle w_{1}w_{2}} 的端點。每當一條帶權重為 w 1 {\displaystyle w_{1}} 的路徑 C {\displaystyle C} 離開一個帶權重為 w 2 {\displaystyle w_{2}} 的體積 Ω {\displaystyle \Omega } 時,交集 C ∩ U {\displaystyle \mathbf {C} \cap \mathbf {U} } 在離開點處獲得一個帶權重為 − w 1 w 2 {\displaystyle -w_{1}w_{2}} 的端點。當來自 C {\displaystyle \mathbf {C} } 的路徑進入或離開來自 U {\displaystyle \mathbf {U} } 的體積時,為 C ∩ U {\displaystyle \mathbf {C} \cap \mathbf {U} } 生成的端點是多路徑 C {\displaystyle \mathbf {C} } 與 U {\displaystyle \mathbf {U} } 的內向多曲面的交集。這為 ∇ ⋅ ( J U ) {\displaystyle \nabla \cdot (\mathbf {J} U)} 提供了項 J ⋅ ( ∇ U ) {\displaystyle \mathbf {J} \cdot (\nabla U)} 。
集合 C ∩ U {\displaystyle \mathbf {C} \cap \mathbf {U} } 的所有端點是: ∇ ⋅ ( J U ) = ( ∇ ⋅ J ) U + J ⋅ ( ∇ U ) {\displaystyle \nabla \cdot (\mathbf {J} U)=(\nabla \cdot \mathbf {J} )U+\mathbf {J} \cdot (\nabla U)} 。本質上,集合 C ∩ U {\displaystyle \mathbf {C} \cap \mathbf {U} } 的端點是 C {\displaystyle \mathbf {C} } 中包含在 U {\displaystyle \mathbf {U} } 中的那些端點,再加上從 C {\displaystyle \mathbf {C} } 出入 U {\displaystyle \mathbf {U} } 體積的路徑上的那些點。這在右側的影像中有所描繪。
從恆等式 ∇ ⋅ ( J U ) = ( ∇ ⋅ J ) U + J ⋅ ( ∇ U ) {\displaystyle \nabla \cdot (\mathbf {J} U)=(\nabla \cdot \mathbf {J} )U+\mathbf {J} \cdot (\nabla U)} ,計算總的點權重得到: ∭ q ∈ R 3 ∇ ⋅ ( J ( q ) U ( q ) ) d V = ∭ q ∈ R 3 ( ∇ ⋅ J ( q ) ) U ( q ) d V + ∭ q ∈ R 3 J ( q ) ⋅ ( ∇ U ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\nabla \cdot (\mathbf {J} (\mathbf {q} )U(\mathbf {q} ))dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \cdot \mathbf {J} (\mathbf {q} ))U(\mathbf {q} )dV+\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {J} (\mathbf {q} )\cdot (\nabla U(\mathbf {q} ))dV} 。對於多路徑的端點,每個起點必須與一個終點配對,因此多路徑的端點的總點權重為 0。 ∭ q ∈ R 3 ∇ ⋅ ( J ( q ) U ( q ) ) d V = 0 {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\nabla \cdot (\mathbf {J} (\mathbf {q} )U(\mathbf {q} ))dV=0} ,因此 ∭ q ∈ R 3 ( ∇ ⋅ J ( q ) ) U ( q ) d V = − ∭ q ∈ R 3 J ( q ) ⋅ ( ∇ U ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \cdot \mathbf {J} (\mathbf {q} ))U(\mathbf {q} )dV=-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {J} (\mathbf {q} )\cdot (\nabla U(\mathbf {q} ))dV} 。多路徑 C {\displaystyle \mathbf {C} } 與多體積 U {\displaystyle \mathbf {U} } 之間的總交點是 C {\displaystyle \mathbf {C} } 與 U {\displaystyle \mathbf {U} } 的內向表面之間的總交點的負值。
如果 J {\displaystyle \mathbf {J} } 表示從點 q 0 {\displaystyle \mathbf {q} _{0}} 開始,到點 q 1 {\displaystyle \mathbf {q} _{1}} 結束的簡單路徑 C {\displaystyle C} ,那麼上述積分恆等式變為
∭ q ∈ R 3 ( ∇ ⋅ δ 1 ( q ; C ) ) U ( q ) d V = − ∭ q ∈ R 3 δ 1 ( q ; C ) ⋅ ( ∇ U ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \cdot \delta _{1}(\mathbf {q} ;C))U(\mathbf {q} )dV=-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{1}(\mathbf {q} ;C)\cdot (\nabla U(\mathbf {q} ))dV} ⟺ ∭ q ∈ R 3 ( δ 0 ( q ; q 0 ) − δ 0 ( q ; q 1 ) ) U ( q ) d V = − ∫ q ∈ C ( ∇ U ( q ) ) ⋅ d q {\displaystyle \iff \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\delta _{0}(\mathbf {q} ;\mathbf {q} _{0})-\delta _{0}(\mathbf {q} ;\mathbf {q} _{1}))U(\mathbf {q} )dV=-\int _{\mathbf {q} \in C}(\nabla U(\mathbf {q} ))\cdot d\mathbf {q} } ⟺ U ( q 0 ) − U ( q 1 ) = − ∫ q ∈ C ( ∇ U ( q ) ) ⋅ d q {\displaystyle \iff U(\mathbf {q} _{0})-U(\mathbf {q} _{1})=-\int _{\mathbf {q} \in C}(\nabla U(\mathbf {q} ))\cdot d\mathbf {q} } ⟺ ∫ q ∈ C ( ∇ U ( q ) ) ⋅ d q = U ( q 1 ) − U ( q 0 ) {\displaystyle \iff \int _{\mathbf {q} \in C}(\nabla U(\mathbf {q} ))\cdot d\mathbf {q} =U(\mathbf {q} _{1})-U(\mathbf {q} _{0})} 這被稱為 **梯度定理**。
如果 U {\displaystyle U} 表示具有 **向外** 指向表面的簡單體積 Ω {\displaystyle \Omega } σ {\displaystyle \sigma } ,那麼積分恆等式變為
∭ q ∈ R 3 ( ∇ ⋅ J ( q ) ) δ 3 ( q ; Ω ) d V = − ∭ q ∈ R 3 J ( q ) ⋅ ( ∇ δ 3 ( q ; Ω ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \cdot \mathbf {J} (\mathbf {q} ))\delta _{3}(\mathbf {q} ;\Omega )dV=-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {J} (\mathbf {q} )\cdot (\nabla \delta _{3}(\mathbf {q} ;\Omega ))dV} ⟺ ∭ q ∈ Ω ( ∇ ⋅ J ( q ) ) d V = − ∭ q ∈ R 3 J ( q ) ⋅ ( − δ 2 ( q ; σ ) ) d V {\displaystyle \iff \iiint _{\mathbf {q} \in \Omega }(\nabla \cdot \mathbf {J} (\mathbf {q} ))dV=-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {J} (\mathbf {q} )\cdot (-\delta _{2}(\mathbf {q} ;\sigma ))dV} ⟺ ∭ q ∈ Ω ( ∇ ⋅ J ( q ) ) d V = ∬ q ∈ σ J ( q ) ⋅ d S {\displaystyle \iff \iiint _{\mathbf {q} \in \Omega }(\nabla \cdot \mathbf {J} (\mathbf {q} ))dV=\iint _{\mathbf {q} \in \sigma }\mathbf {J} (\mathbf {q} )\cdot d\mathbf {S} } 這是 **高斯散度定理** 。
總結
給定由向量場 J {\displaystyle \mathbf {J} } 表示的多路徑,以及由標量場 U {\displaystyle U} 表示的多體積,則交點的端點為: ∇ ⋅ ( J U ) = ( ∇ ⋅ J ) U + J ⋅ ( ∇ U ) {\displaystyle \nabla \cdot (\mathbf {J} U)=(\nabla \cdot \mathbf {J} )U+\mathbf {J} \cdot (\nabla U)} .
給定由向量場 J {\displaystyle \mathbf {J} } 表示的多路徑,以及由標量場 U {\displaystyle U} 表示的多體積,則 ∭ q ∈ R 3 ( ∇ ⋅ J ( q ) ) U ( q ) d V = − ∭ q ∈ R 3 J ( q ) ⋅ ( ∇ U ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \cdot \mathbf {J} (\mathbf {q} ))U(\mathbf {q} )dV=-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {J} (\mathbf {q} )\cdot (\nabla U(\mathbf {q} ))dV} .
給定一條簡單的路徑 C {\displaystyle C} ,它從點 q 0 {\displaystyle \mathbf {q} _{0}} 開始,並在點 q 1 {\displaystyle \mathbf {q} _{1}} 結束,以及由標量場 U {\displaystyle U} 表示的多體積,則 ∫ q ∈ C ( ∇ U ( q ) ) ⋅ d q = U ( q 1 ) − U ( q 0 ) {\displaystyle \int _{\mathbf {q} \in C}(\nabla U(\mathbf {q} ))\cdot d\mathbf {q} =U(\mathbf {q} _{1})-U(\mathbf {q} _{0})} 。這就是梯度定理 。
給定由向量場 J {\displaystyle \mathbf {J} } 表示的多路徑,以及具有向外定向表面 σ {\displaystyle \sigma } 的簡單體積 Ω {\displaystyle \Omega } ,則 ∭ q ∈ Ω ( ∇ ⋅ J ( q ) ) d V = ∬ q ∈ σ J ( q ) ⋅ d S {\displaystyle \iiint _{\mathbf {q} \in \Omega }(\nabla \cdot \mathbf {J} (\mathbf {q} ))dV=\iint _{\mathbf {q} \in \sigma }\mathbf {J} (\mathbf {q} )\cdot d\mathbf {S} } 。這就是高斯散度定理 。
當第一個表面(藍色)的逆時針邊界與第二個表面(橙色)相交時,將為交點路徑建立具有正確極性的端點。當第二個表面的逆時針邊界與第一個表面相交時,將為交點路徑建立具有相反極性的端點。
首先,我們有兩個多曲面 S 1 {\displaystyle \mathbf {S} _{1}} ,用向量場 F 1 {\displaystyle \mathbf {F} _{1}} 表示,以及第二個多曲面 S 2 {\displaystyle \mathbf {S} _{2}} ,用向量場 F 2 {\displaystyle \mathbf {F} _{2}} 表示。它們的交集 S 1 ∩ S 2 {\displaystyle \mathbf {S} _{1}\cap \mathbf {S} _{2}} 用向量場 F 1 × F 2 {\displaystyle \mathbf {F} _{1}\times \mathbf {F} _{2}} 表示。
現在,我們考慮一個來自 S 1 {\displaystyle \mathbf {S} _{1}} 且權重為 w 1 {\displaystyle w_{1}} 的曲面 σ 1 {\displaystyle \sigma _{1}} ,以及一個來自 S 2 {\displaystyle \mathbf {S} _{2}} 且權重為 w 2 {\displaystyle w_{2}} 的曲面 σ 2 {\displaystyle \sigma _{2}} 。我們用 ∂ σ 1 {\displaystyle \partial \sigma _{1}} 表示 σ 1 {\displaystyle \sigma _{1}} 的逆時針邊界,並用 ∂ σ 2 {\displaystyle \partial \sigma _{2}} 表示 σ 2 {\displaystyle \sigma _{2}} 的逆時針邊界。關於 σ 1 ∩ σ 2 {\displaystyle \sigma _{1}\cap \sigma _{2}} 的端點,有 4 種情況。
當 ∂ σ 1 {\displaystyle \partial \sigma _{1}} 與 σ 2 {\displaystyle \sigma _{2}} 在首選方向上相交時,交點 ∂ σ 1 ∩ σ 2 {\displaystyle \partial \sigma _{1}\cap \sigma _{2}} 的權重為 + w 1 w 2 {\displaystyle +w_{1}w_{2}} ,而 σ 1 ∩ σ 2 {\displaystyle \sigma _{1}\cap \sigma _{2}} 在 ∂ σ 1 ∩ σ 2 {\displaystyle \partial \sigma _{1}\cap \sigma _{2}} 處形成一個權重為 + w 1 w 2 {\displaystyle +w_{1}w_{2}} 的端點(起點)。
當 ∂ σ 1 {\displaystyle \partial \sigma _{1}} 與 σ 2 {\displaystyle \sigma _{2}} 在相反方向上相交時,交點 ∂ σ 1 ∩ σ 2 {\displaystyle \partial \sigma _{1}\cap \sigma _{2}} 的權重為 − w 1 w 2 {\displaystyle -w_{1}w_{2}} ,而 σ 1 ∩ σ 2 {\displaystyle \sigma _{1}\cap \sigma _{2}} 在 ∂ σ 1 ∩ σ 2 {\displaystyle \partial \sigma _{1}\cap \sigma _{2}} 處形成一個權重為 − w 1 w 2 {\displaystyle -w_{1}w_{2}} 的端點(終點)。
當 ∂ σ 2 {\displaystyle \partial \sigma _{2}} 與 σ 1 {\displaystyle \sigma _{1}} 在優先方向相交時,交點 σ 1 ∩ ∂ σ 2 {\displaystyle \sigma _{1}\cap \partial \sigma _{2}} 的權重為 + w 1 w 2 {\displaystyle +w_{1}w_{2}} ,而對於 σ 1 ∩ σ 2 {\displaystyle \sigma _{1}\cap \sigma _{2}} ,在 σ 1 ∩ ∂ σ 2 {\displaystyle \sigma _{1}\cap \partial \sigma _{2}} 處形成一個權重為 − w 1 w 2 {\displaystyle -w_{1}w_{2}} 的端點(結束點)。
當 ∂ σ 2 {\displaystyle \partial \sigma _{2}} 與 σ 1 {\displaystyle \sigma _{1}} 在相反方向相交時,交點 σ 1 ∩ ∂ σ 2 {\displaystyle \sigma _{1}\cap \partial \sigma _{2}} 的權重為 − w 1 w 2 {\displaystyle -w_{1}w_{2}} ,而對於 σ 1 ∩ σ 2 {\displaystyle \sigma _{1}\cap \sigma _{2}} ,在 σ 1 ∩ ∂ σ 2 {\displaystyle \sigma _{1}\cap \partial \sigma _{2}} 處形成一個權重為 + w 1 w 2 {\displaystyle +w_{1}w_{2}} 的端點(起點)。
可以看出,交集 ∂ σ 1 ∩ σ 2 {\displaystyle \partial \sigma _{1}\cap \sigma _{2}} 為 σ 1 ∩ σ 2 {\displaystyle \sigma _{1}\cap \sigma _{2}} 形成端點,並具有正確的極性;而交集 σ 1 ∩ ∂ σ 2 {\displaystyle \sigma _{1}\cap \partial \sigma _{2}} 為 σ 1 ∩ σ 2 {\displaystyle \sigma _{1}\cap \sigma _{2}} 形成端點,並具有相反的極性。這可以在右側的影像中觀察到。這意味著 S 1 ∩ S 2 {\displaystyle \mathbf {S} _{1}\cap \mathbf {S} _{2}} 的端點為: ∇ ⋅ ( F 1 × F 2 ) = ( ∇ × F 1 ) ⋅ F 2 − F 1 ⋅ ( ∇ × F 2 ) {\displaystyle \nabla \cdot (\mathbf {F} _{1}\times \mathbf {F} _{2})=(\nabla \times \mathbf {F} _{1})\cdot \mathbf {F} _{2}-\mathbf {F} _{1}\cdot (\nabla \times \mathbf {F} _{2})} .
顯示了兩個表面,每個表面都有一個逆時針方向的邊界。每個邊界與另一個表面的交叉次數相同。紅色邊界在首選方向上穿過綠色表面 2 次,綠色邊界在首選方向上穿過紅色表面 2 次。
From the identity ∇ ⋅ ( F 1 × F 2 ) = ( ∇ × F 1 ) ⋅ F 2 − F 1 ⋅ ( ∇ × F 2 ) {\displaystyle \nabla \cdot (\mathbf {F} _{1}\times \mathbf {F} _{2})=(\nabla \times \mathbf {F} _{1})\cdot \mathbf {F} _{2}-\mathbf {F} _{1}\cdot (\nabla \times \mathbf {F} _{2})} , counting the total point weight gives: ∭ q ∈ R 3 ∇ ⋅ ( F 1 ( q ) × F 2 ( q ) ) d V = ∭ q ∈ R 3 ( ∇ × F 1 ( q ) ) ⋅ F 2 ( q ) d V − ∭ q ∈ R 3 F 1 ( q ) ⋅ ( ∇ × F 2 ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\nabla \cdot (\mathbf {F} _{1}(\mathbf {q} )\times \mathbf {F} _{2}(\mathbf {q} ))dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \times \mathbf {F} _{1}(\mathbf {q} ))\cdot \mathbf {F} _{2}(\mathbf {q} )dV-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} _{1}(\mathbf {q} )\cdot (\nabla \times \mathbf {F} _{2}(\mathbf {q} ))dV} . For the endpoints of a multi-path, every starting point must be paired with a finishing point so the total point weight of the endpoints of a multi-path is 0. ∭ q ∈ R 3 ∇ ⋅ ( F 1 ( q ) × F 2 ( q ) ) d V = 0 {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\nabla \cdot (\mathbf {F} _{1}(\mathbf {q} )\times \mathbf {F} _{2}(\mathbf {q} ))dV=0} so hence ∭ q ∈ R 3 ( ∇ × F 1 ( q ) ) ⋅ F 2 ( q ) d V = ∭ q ∈ R 3 F 1 ( q ) ⋅ ( ∇ × F 2 ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \times \mathbf {F} _{1}(\mathbf {q} ))\cdot \mathbf {F} _{2}(\mathbf {q} )dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} _{1}(\mathbf {q} )\cdot (\nabla \times \mathbf {F} _{2}(\mathbf {q} ))dV} . The total intersection of the counter-clockwise boundary of multi-surface S 1 {\displaystyle \mathbf {S} _{1}} with multi-surface S 2 {\displaystyle \mathbf {S} _{2}} is the total intersection of the counter-clockwise boundary of S 2 {\displaystyle \mathbf {S} _{2}} with S 1 {\displaystyle \mathbf {S} _{1}} . This is illustrated by the image on the right.
如果 F 2 {\displaystyle \mathbf {F} _{2}} 表示具有逆時針方向邊界 ∂ σ {\displaystyle \partial \sigma } 的簡單表面 σ {\displaystyle \sigma } ,則上述積分恆等式變為
∭ q ∈ R 3 ( ∇ × F 1 ( q ) ) ⋅ δ 2 ( q ; σ ) d V = ∭ q ∈ R 3 F 1 ( q ) ⋅ ( ∇ × δ 2 ( q ; σ ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \times \mathbf {F} _{1}(\mathbf {q} ))\cdot \delta _{2}(\mathbf {q} ;\sigma )dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} _{1}(\mathbf {q} )\cdot (\nabla \times \delta _{2}(\mathbf {q} ;\sigma ))dV} ⟺ ∬ q ∈ σ ( ∇ × F 1 ( q ) ) ⋅ d S = ∭ q ∈ R 3 F 1 ( q ) ⋅ δ 1 ( q ; ∂ σ ) d V {\displaystyle \iff \iint _{\mathbf {q} \in \sigma }(\nabla \times \mathbf {F} _{1}(\mathbf {q} ))\cdot d\mathbf {S} =\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} _{1}(\mathbf {q} )\cdot \delta _{1}(\mathbf {q} ;\partial \sigma )dV} ⟺ ∬ q ∈ σ ( ∇ × F 1 ( q ) ) ⋅ d S = ∫ q ∈ ∂ σ F 1 ( q ) ⋅ d q {\displaystyle \iff \iint _{\mathbf {q} \in \sigma }(\nabla \times \mathbf {F} _{1}(\mathbf {q} ))\cdot d\mathbf {S} =\int _{\mathbf {q} \in \partial \sigma }\mathbf {F} _{1}(\mathbf {q} )\cdot d\mathbf {q} }
這被稱為斯托克斯定理 。
總結
給定兩個由向量場表示的多曲面 F 1 {\displaystyle \mathbf {F} _{1}} 和 F 2 {\displaystyle \mathbf {F} _{2}} ,那麼它們的交集的端點為: ∇ ⋅ ( F 1 × F 2 ) = ( ∇ × F 1 ) ⋅ F 2 − F 1 ⋅ ( ∇ × F 2 ) {\displaystyle \nabla \cdot (\mathbf {F} _{1}\times \mathbf {F} _{2})=(\nabla \times \mathbf {F} _{1})\cdot \mathbf {F} _{2}-\mathbf {F} _{1}\cdot (\nabla \times \mathbf {F} _{2})} .
給定兩個由向量場表示的多曲面 F 1 {\displaystyle \mathbf {F} _{1}} 和 F 2 {\displaystyle \mathbf {F} _{2}} ,那麼 ∭ q ∈ R 3 ( ∇ × F 1 ( q ) ) ⋅ F 2 ( q ) d V = ∭ q ∈ R 3 F 1 ( q ) ⋅ ( ∇ × F 2 ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \times \mathbf {F} _{1}(\mathbf {q} ))\cdot \mathbf {F} _{2}(\mathbf {q} )dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} _{1}(\mathbf {q} )\cdot (\nabla \times \mathbf {F} _{2}(\mathbf {q} ))dV} 。
給定一個由向量場表示的多曲面 F 1 {\displaystyle \mathbf {F} _{1}} 和一個簡單曲面 σ {\displaystyle \sigma } ,其逆時針方向邊界為 ∂ σ {\displaystyle \partial \sigma } ,那麼 ∬ q ∈ σ ( ∇ × F 1 ( q ) ) ⋅ d S = ∫ q ∈ ∂ σ F 1 ( q ) ⋅ d q {\displaystyle \iint _{\mathbf {q} \in \sigma }(\nabla \times \mathbf {F} _{1}(\mathbf {q} ))\cdot d\mathbf {S} =\int _{\mathbf {q} \in \partial \sigma }\mathbf {F} _{1}(\mathbf {q} )\cdot d\mathbf {q} } 。這就是斯托克斯定理 。
除了從檢查交點的端點推匯出的恆等式外,還可以透過檢查由交點產生的曲面的逆時針邊界來推匯出更多恆等式。
左側是一個定向曲面和一個體積。曲面的逆時針邊界和體積的內向定向曲面如圖所示。右側是曲面與體積相交形成的曲面,以及交點曲面的逆時針邊界也如圖所示。交點的邊界由兩部分組成:原始曲面的邊界與體積的交點,以及體積的內向定向曲面與原始曲面的交點。
首先,定義一個多表面 S {\displaystyle \mathbf {S} } ,用向量場 F {\displaystyle \mathbf {F} } 表示,以及一個多體積 U {\displaystyle \mathbf {U} } ,用標量場 U {\displaystyle U} 表示。它們的交集 S ∩ U {\displaystyle \mathbf {S} \cap U} 用向量場 F U {\displaystyle \mathbf {F} U} 表示。
Consider a surface σ {\displaystyle \sigma } with weight w 1 {\displaystyle w_{1}} from S {\displaystyle \mathbf {S} } , and a volume Ω {\displaystyle \Omega } with weight w 2 {\displaystyle w_{2}} from U {\displaystyle \mathbf {U} } . Let ∂ σ {\displaystyle \partial \sigma } denote the counter-clockwise boundary of σ {\displaystyle \sigma } , and let ∂ Ω {\displaystyle \partial \Omega } denote the inwards oriented surface of Ω {\displaystyle \Omega } . There are two sources for the counter-clockwise boundary of σ ∩ Ω {\displaystyle \sigma \cap \Omega } . Any time ∂ σ {\displaystyle \partial \sigma } intersects Ω {\displaystyle \Omega } , the intersection ∂ σ ∩ Ω {\displaystyle \partial \sigma \cap \Omega } contributes to the boundary of σ ∩ Ω {\displaystyle \sigma \cap \Omega } . When ∂ σ {\displaystyle \partial \sigma } leaves Ω {\displaystyle \Omega } , the boundary of σ ∩ Ω {\displaystyle \sigma \cap \Omega } cannot follow, and instead must trace along the surface of Ω {\displaystyle \Omega } while remaining in the surface σ {\displaystyle \sigma } as indicated in the image to the right. The boundary of the total intersection S ∩ U {\displaystyle \mathbf {S} \cap \mathbf {U} } , denoted by ∇ × ( F U ) {\displaystyle \nabla \times (\mathbf {F} U)} , consists of two parts: the intersection of the boundary of S {\displaystyle \mathbf {S} } with U {\displaystyle \mathbf {U} } , denoted by ( ∇ × F ) U {\displaystyle (\nabla \times \mathbf {F} )U} , and the intersection of the inwards-oriented surface of U {\displaystyle \mathbf {U} } with S {\displaystyle \mathbf {S} } , denoted by ( ∇ U ) × F = − F × ( ∇ U ) {\displaystyle (\nabla U)\times \mathbf {F} =-\mathbf {F} \times (\nabla U)} . Therefore: ∇ × ( F U ) = ( ∇ × F ) U + ( ∇ U ) × F = ( ∇ × F ) U − F × ( ∇ U ) {\displaystyle \nabla \times (\mathbf {F} U)=(\nabla \times \mathbf {F} )U+(\nabla U)\times \mathbf {F} =(\nabla \times \mathbf {F} )U-\mathbf {F} \times (\nabla U)} .
從恆等式 ∇ × ( F U ) = ( ∇ × F ) U − F × ( ∇ U ) {\displaystyle \nabla \times (\mathbf {F} U)=(\nabla \times \mathbf {F} )U-\mathbf {F} \times (\nabla U)} ,計算總位移得到: ∭ q ∈ R 3 ∇ × ( F ( q ) U ( q ) ) d V = ∭ q ∈ R 3 ( ∇ × F ( q ) ) U ( q ) d V − ∭ q ∈ R 3 F ( q ) × ( ∇ U ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\nabla \times (\mathbf {F} (\mathbf {q} )U(\mathbf {q} ))dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \times \mathbf {F} (\mathbf {q} ))U(\mathbf {q} )dV-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} (\mathbf {q} )\times (\nabla U(\mathbf {q} ))dV} 。多曲面的逆時針邊界是一個閉合的多回路,迴路產生的總位移為 0 {\displaystyle \mathbf {0} } 。 ∭ q ∈ R 3 ∇ × ( F ( q ) U ( q ) ) d V = 0 {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\nabla \times (\mathbf {F} (\mathbf {q} )U(\mathbf {q} ))dV=\mathbf {0} } ,因此 ∭ q ∈ R 3 ( ∇ × F ( q ) ) U ( q ) d V = ∭ q ∈ R 3 F ( q ) × ( ∇ U ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \times \mathbf {F} (\mathbf {q} ))U(\mathbf {q} )dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} (\mathbf {q} )\times (\nabla U(\mathbf {q} ))dV} 。多曲面 S {\displaystyle \mathbf {S} } 的邊界與多體積 U {\displaystyle \mathbf {U} } 的總交集是 S {\displaystyle \mathbf {S} } 與 U {\displaystyle \mathbf {U} } 表面的總交集。
如果 F {\displaystyle \mathbf {F} } 表示一個簡單曲面 σ {\displaystyle \sigma } ,其逆時針邊界為 ∂ σ {\displaystyle \partial \sigma } ,則上述積分恆等式變為
∭ q ∈ R 3 ( ∇ × δ 2 ( q ; σ ) ) U ( q ) d V = ∭ q ∈ R 3 δ 2 ( q ; σ ) × ( ∇ U ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \times \delta _{2}(\mathbf {q} ;\sigma ))U(\mathbf {q} )dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{2}(\mathbf {q} ;\sigma )\times (\nabla U(\mathbf {q} ))dV} ⟺ ∭ q ∈ R 3 δ 1 ( q ; ∂ σ ) U ( q ) d V = ∬ q ∈ σ d S × ( ∇ U ( q ) ) {\displaystyle \iff \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{1}(\mathbf {q} ;\partial \sigma )U(\mathbf {q} )dV=\iint _{\mathbf {q} \in \sigma }d\mathbf {S} \times (\nabla U(\mathbf {q} ))} ⟺ ∫ q ∈ ∂ σ U ( q ) d q = − ∬ q ∈ σ ( ∇ U ( q ) ) × d S {\displaystyle \iff \int _{\mathbf {q} \in \partial \sigma }U(\mathbf {q} )d\mathbf {q} =-\iint _{\mathbf {q} \in \sigma }(\nabla U(\mathbf {q} ))\times d\mathbf {S} }
如果 Ω {\displaystyle \Omega } 表示一個簡單體積,具有向外 指向的表面 σ {\displaystyle \sigma } ,則積分恆等式變為
∭ q ∈ R 3 ( ∇ × F ( q ) ) δ 3 ( q ; Ω ) d V = ∭ q ∈ R 3 F ( q ) × ( ∇ δ 3 ( q ; Ω ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \times \mathbf {F} (\mathbf {q} ))\delta _{3}(\mathbf {q} ;\Omega )dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} (\mathbf {q} )\times (\nabla \delta _{3}(\mathbf {q} ;\Omega ))dV} ⟺ ∭ q ∈ Ω ( ∇ × F ( q ) ) d V = ∭ q ∈ R 3 F ( q ) × ( − δ 2 ( q ; σ ) ) d V {\displaystyle \iff \iiint _{\mathbf {q} \in \Omega }(\nabla \times \mathbf {F} (\mathbf {q} ))dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} (\mathbf {q} )\times (-\delta _{2}(\mathbf {q} ;\sigma ))dV} ⟺ ∭ q ∈ Ω ( ∇ × F ( q ) ) d V = − ∬ q ∈ σ F ( q ) × d S {\displaystyle \iff \iiint _{\mathbf {q} \in \Omega }(\nabla \times \mathbf {F} (\mathbf {q} ))dV=-\iint _{\mathbf {q} \in \sigma }\mathbf {F} (\mathbf {q} )\times d\mathbf {S} }
總結
給定一個由向量場 F {\displaystyle \mathbf {F} } 表示的多表面,以及一個由標量場 U {\displaystyle U} 表示的多體積,則交集的反時針邊界為: ∇ × ( F U ) = ( ∇ × F ) U − F × ( ∇ U ) {\displaystyle \nabla \times (\mathbf {F} U)=(\nabla \times \mathbf {F} )U-\mathbf {F} \times (\nabla U)} .
給定一個由向量場 F {\displaystyle \mathbf {F} } 表示的多重曲面,以及一個由標量場 U {\displaystyle U} 表示的多重體積,則 ∭ q ∈ R 3 ( ∇ × F ( q ) ) U ( q ) d V = ∭ q ∈ R 3 F ( q ) × ( ∇ U ( q ) ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \times \mathbf {F} (\mathbf {q} ))U(\mathbf {q} )dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\mathbf {F} (\mathbf {q} )\times (\nabla U(\mathbf {q} ))dV}
給定一個簡單的曲面 σ {\displaystyle \sigma } ,其逆時針邊界為 ∂ σ {\displaystyle \partial \sigma } ,以及一個由標量場 U {\displaystyle U} 表示的多重體積,則 ∫ q ∈ ∂ σ U ( q ) d q = − ∬ q ∈ σ ( ∇ U ( q ) ) × d S {\displaystyle \int _{\mathbf {q} \in \partial \sigma }U(\mathbf {q} )d\mathbf {q} =-\iint _{\mathbf {q} \in \sigma }(\nabla U(\mathbf {q} ))\times d\mathbf {S} } .
給定一個由向量場 F {\displaystyle \mathbf {F} } 表示的多重曲面,以及一個簡單的體積 Ω {\displaystyle \Omega } ,其外向表面為 σ {\displaystyle \sigma } ,則 ∭ q ∈ Ω ( ∇ × F ( q ) ) d V = − ∬ q ∈ σ F ( q ) × d S {\displaystyle \iiint _{\mathbf {q} \in \Omega }(\nabla \times \mathbf {F} (\mathbf {q} ))dV=-\iint _{\mathbf {q} \in \sigma }\mathbf {F} (\mathbf {q} )\times d\mathbf {S} } .
可以透過檢查由交集產生的體積的曲面來推匯出更多恆等式。
體積-體積交集的曲面由兩部分組成:第二體積的曲面與第一個體積的交集,以及第一個體積的曲面與第二個體積的交集。
從一個多體積的 U 1 {\displaystyle \mathbf {U} _{1}} 開始,用標量場 U 1 {\displaystyle U_{1}} 表示,以及第二個多體積的 U 2 {\displaystyle \mathbf {U} _{2}} ,用標量場 U 2 {\displaystyle U_{2}} 表示。交集 U 1 ∩ U 2 {\displaystyle \mathbf {U} _{1}\cap \mathbf {U} _{2}} 用標量場 U 1 U 2 {\displaystyle U_{1}U_{2}} 表示。
Consider a volume Ω 1 {\displaystyle \Omega _{1}} with weight w 1 {\displaystyle w_{1}} from U 1 {\displaystyle \mathbf {U} _{1}} , and a volume Ω 2 {\displaystyle \Omega _{2}} with weight w 2 {\displaystyle w_{2}} from U 2 {\displaystyle \mathbf {U} _{2}} . Let σ 1 {\displaystyle \sigma _{1}} denote the inwards-oriented surface of Ω 1 {\displaystyle \Omega _{1}} , and let σ 2 {\displaystyle \sigma _{2}} denote the inwards-oriented surface of Ω 2 {\displaystyle \Omega _{2}} . There are two parts to the inwards-oriented surface of the intersection Ω 1 ∩ Ω 2 {\displaystyle \Omega _{1}\cap \Omega _{2}} , as shown in the image to the right. Part of the surface of Ω 1 ∩ Ω 2 {\displaystyle \Omega _{1}\cap \Omega _{2}} consists of the portion of σ 2 {\displaystyle \sigma _{2}} that is contained by Ω 1 {\displaystyle \Omega _{1}} , which contributes the term U 1 ( ∇ U 2 ) {\displaystyle U_{1}(\nabla U_{2})} to ∇ ( U 1 U 2 ) {\displaystyle \nabla (U_{1}U_{2})} . The other part of the surface of Ω 1 ∩ Ω 2 {\displaystyle \Omega _{1}\cap \Omega _{2}} consists of the portion of σ 1 {\displaystyle \sigma _{1}} that is contained by Ω 2 {\displaystyle \Omega _{2}} , which contributes the term ( ∇ U 1 ) U 2 {\displaystyle (\nabla U_{1})U_{2}} to ∇ ( U 1 U 2 ) {\displaystyle \nabla (U_{1}U_{2})} . Therefore the total surface of U 1 ∩ U 2 {\displaystyle \mathbf {U} _{1}\cap \mathbf {U} _{2}} is ∇ ( U 1 U 2 ) = U 1 ( ∇ U 2 ) + ( ∇ U 1 ) U 2 {\displaystyle \nabla (U_{1}U_{2})=U_{1}(\nabla U_{2})+(\nabla U_{1})U_{2}} .
從恆等式 ∇ ( U 1 U 2 ) = U 1 ( ∇ U 2 ) + ( ∇ U 1 ) U 2 {\displaystyle \nabla (U_{1}U_{2})=U_{1}(\nabla U_{2})+(\nabla U_{1})U_{2}} ,計算總表面向量得到: ∭ q ∈ R 3 ∇ ( U 1 ( q ) U 2 ( q ) ) d V = ∭ q ∈ R 3 U 1 ( q ) ( ∇ U 2 ( q ) ) d V + ∭ q ∈ R 3 ( ∇ U 1 ( q ) ) U 2 ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\nabla (U_{1}(\mathbf {q} )U_{2}(\mathbf {q} ))dV=\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}U_{1}(\mathbf {q} )(\nabla U_{2}(\mathbf {q} ))dV+\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla U_{1}(\mathbf {q} ))U_{2}(\mathbf {q} )dV} 。多體積的向內表面是一個封閉的多表面,封閉表面的總表面向量是 0 {\displaystyle \mathbf {0} } 。 ∭ q ∈ R 3 ∇ ( U 1 ( q ) U 2 ( q ) ) d V = 0 {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\nabla (U_{1}(\mathbf {q} )U_{2}(\mathbf {q} ))dV=\mathbf {0} } ,因此 ∭ q ∈ R 3 U 1 ( q ) ( ∇ U 2 ( q ) ) d V = − ∭ q ∈ R 3 ( ∇ U 1 ( q ) ) U 2 ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}U_{1}(\mathbf {q} )(\nabla U_{2}(\mathbf {q} ))dV=-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla U_{1}(\mathbf {q} ))U_{2}(\mathbf {q} )dV} 。多體積 U 1 {\displaystyle \mathbf {U} _{1}} 與多體積 U 2 {\displaystyle \mathbf {U} _{2}} 的向內表面交集的總表面向量與 U 1 {\displaystyle \mathbf {U} _{1}} 的向內表面與 U 2 {\displaystyle \mathbf {U} _{2}} 交集的總表面向量相反。
如果 U 1 {\displaystyle U_{1}} 表示一個具有**外向**法線方向的簡單體積 Ω {\displaystyle \Omega } 的曲面 σ {\displaystyle \sigma } ,那麼上述積分恆等式變為: ∭ q ∈ R 3 δ 3 ( q ; Ω ) ( ∇ U 2 ( q ) ) d V = − ∭ q ∈ R 3 ( ∇ δ 3 ( q ; Ω ) ) U 2 ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}\delta _{3}(\mathbf {q} ;\Omega )(\nabla U_{2}(\mathbf {q} ))dV=-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla \delta _{3}(\mathbf {q} ;\Omega ))U_{2}(\mathbf {q} )dV} ⟺ ∭ q ∈ Ω ( ∇ U 2 ( q ) ) d V = − ∭ q ∈ R 3 ( − δ 2 ( q ; σ ) ) U 2 ( q ) d V {\displaystyle \iff \iiint _{\mathbf {q} \in \Omega }(\nabla U_{2}(\mathbf {q} ))dV=-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(-\delta _{2}(\mathbf {q} ;\sigma ))U_{2}(\mathbf {q} )dV} ⟺ ∭ q ∈ Ω ( ∇ U 2 ( q ) ) d V = ∬ q ∈ σ U 2 ( q ) d S {\displaystyle \iff \iiint _{\mathbf {q} \in \Omega }(\nabla U_{2}(\mathbf {q} ))dV=\iint _{\mathbf {q} \in \sigma }U_{2}(\mathbf {q} )d\mathbf {S} }
總結
給定兩個由標量場 U 1 {\displaystyle U_{1}} 和 U 2 {\displaystyle U_{2}} 表示的兩個多體積,那麼它們的交集的內向法線方向的曲面為: ∇ ( U 1 U 2 ) = U 1 ( ∇ U 2 ) + ( ∇ U 1 ) U 2 {\displaystyle \nabla (U_{1}U_{2})=U_{1}(\nabla U_{2})+(\nabla U_{1})U_{2}} .
給定兩個由標量場表示的多體積,分別記為 U 1 {\displaystyle U_{1}} 和 U 2 {\displaystyle U_{2}} ,則 ∭ q ∈ R 3 U 1 ( q ) ( ∇ U 2 ( q ) ) d V = − ∭ q ∈ R 3 ( ∇ U 1 ( q ) ) U 2 ( q ) d V {\displaystyle \iiint _{\mathbf {q} \in \mathbb {R} ^{3}}U_{1}(\mathbf {q} )(\nabla U_{2}(\mathbf {q} ))dV=-\iiint _{\mathbf {q} \in \mathbb {R} ^{3}}(\nabla U_{1}(\mathbf {q} ))U_{2}(\mathbf {q} )dV} .
給定一個簡單的體積 Ω {\displaystyle \Omega } ,其外表面為 σ {\displaystyle \sigma } ,以及一個由標量場表示的多體積 U 2 {\displaystyle U_{2}} ,則 ∭ q ∈ Ω ( ∇ U 2 ( q ) ) d V = ∬ q ∈ σ U 2 ( q ) d S {\displaystyle \iiint _{\mathbf {q} \in \Omega }(\nabla U_{2}(\mathbf {q} ))dV=\iint _{\mathbf {q} \in \sigma }U_{2}(\mathbf {q} )d\mathbf {S} } .
下表總結了之前各節的結果
交點的端點、邊界和表面
結構 1
結構 2
交點
端點、邊界或表面
多路徑 J 1 {\displaystyle \mathbf {J} _{1}}
多體積 U 2 {\displaystyle U_{2}}
多路徑 J 1 U 2 {\displaystyle \mathbf {J} _{1}U_{2}}
多點 ∇ ⋅ ( J 1 U 2 ) = ( ∇ ⋅ J 1 ) U 2 + J 1 ⋅ ( ∇ U 2 ) {\displaystyle \nabla \cdot (\mathbf {J} _{1}U_{2})=(\nabla \cdot \mathbf {J} _{1})U_{2}+\mathbf {J} _{1}\cdot (\nabla U_{2})}
多表面 F 1 {\displaystyle \mathbf {F} _{1}}
多表面 F 2 {\displaystyle \mathbf {F} _{2}}
多路徑 F 1 × F 2 {\displaystyle \mathbf {F} _{1}\times \mathbf {F} _{2}}
多點 ∇ ⋅ ( F 1 × F 2 ) = ( ∇ × F 1 ) ⋅ F 2 − F 1 ⋅ ( ∇ × F 2 ) {\displaystyle \nabla \cdot (\mathbf {F} _{1}\times \mathbf {F} _{2})=(\nabla \times \mathbf {F} _{1})\cdot \mathbf {F} _{2}-\mathbf {F} _{1}\cdot (\nabla \times \mathbf {F} _{2})}
多表面 F 1 {\displaystyle \mathbf {F} _{1}}
多體積 U 2 {\displaystyle U_{2}}
多曲面 F 1 U 2 {\displaystyle \mathbf {F} _{1}U_{2}}
多路徑 ∇ × ( F 1 U 2 ) = ( ∇ × F 1 ) U 2 − F 1 × ( ∇ U 2 ) {\displaystyle \nabla \times (\mathbf {F} _{1}U_{2})=(\nabla \times \mathbf {F} _{1})U_{2}-\mathbf {F} _{1}\times (\nabla U_{2})}
多體積 U 1 {\displaystyle U_{1}}
多體積 U 2 {\displaystyle U_{2}}
多體積 U 1 U 2 {\displaystyle U_{1}U_{2}}
多曲面 ∇ ( U 1 U 2 ) = ( ∇ U 1 ) U 2 + U 1 ( ∇ U 2 ) {\displaystyle \nabla (U_{1}U_{2})=(\nabla U_{1})U_{2}+U_{1}(\nabla U_{2})}
積分恆等式
簡單結構
多結構
積分恆等式
恆等式名稱
簡單路徑 C {\displaystyle C} ,起點為 C ( 0 ) {\displaystyle C(0)} ,終點為 C ( 1 ) {\displaystyle C(1)}
多體積 U {\displaystyle U}
∫ q ∈ C ( ∇ U ) ⋅ d q = U ( C ( 1 ) ) − U ( C ( 0 ) ) {\displaystyle \int _{\mathbf {q} \in C}(\nabla U)\cdot d\mathbf {q} =U(C(1))-U(C(0))}
梯度定理
簡單體積 Ω {\displaystyle \Omega } ,具有外向 曲面 σ {\displaystyle \sigma }
多路徑 J {\displaystyle \mathbf {J} }
∭ q ∈ Ω ( ∇ ⋅ J ) d V = ∬ q ∈ σ J ⋅ d S {\displaystyle \iiint _{\mathbf {q} \in \Omega }(\nabla \cdot \mathbf {J} )dV=\iint _{\mathbf {q} \in \sigma }\mathbf {J} \cdot d\mathbf {S} }
高斯散度定理
簡單曲面 σ {\displaystyle \sigma } ,具有逆時針方向邊界 ∂ σ {\displaystyle \partial \sigma }
多曲面 F {\displaystyle \mathbf {F} }
∬ q ∈ σ ( ∇ × F ) ⋅ d S = ∫ q ∈ ∂ σ F ⋅ d q {\displaystyle \iint _{\mathbf {q} \in \sigma }(\nabla \times \mathbf {F} )\cdot d\mathbf {S} =\int _{\mathbf {q} \in \partial \sigma }\mathbf {F} \cdot d\mathbf {q} }
斯托克斯定理
簡單曲面 σ {\displaystyle \sigma } ,具有逆時針方向邊界 ∂ σ {\displaystyle \partial \sigma }
多體積 U {\displaystyle U}
∬ q ∈ σ ( ∇ U ) × d S = − ∫ q ∈ ∂ σ U d q {\displaystyle \iint _{\mathbf {q} \in \sigma }(\nabla U)\times d\mathbf {S} =-\int _{\mathbf {q} \in \partial \sigma }Ud\mathbf {q} }
未命名
簡單體積 Ω {\displaystyle \Omega } ,具有外向 曲面 σ {\displaystyle \sigma }
多曲面 F {\displaystyle \mathbf {F} }
∭ q ∈ Ω ( ∇ × F ) d V = − ∬ q ∈ σ F × d S {\displaystyle \iiint _{\mathbf {q} \in \Omega }(\nabla \times \mathbf {F} )dV=-\iint _{\mathbf {q} \in \sigma }\mathbf {F} \times d\mathbf {S} }
未命名
簡單體積 Ω {\displaystyle \Omega } ,具有外向 曲面 σ {\displaystyle \sigma }
多體積 U {\displaystyle U}
∭ q ∈ Ω ( ∇ U ) d V = ∬ q ∈ σ U d S {\displaystyle \iiint _{\mathbf {q} \in \Omega }(\nabla U)dV=\iint _{\mathbf {q} \in \sigma }Ud\mathbf {S} }
未命名