跳轉到內容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
目錄
移到側邊欄
隱藏
開始
1
連續時間傅立葉變換 (CTFT)
切換連續時間傅立葉變換 (CTFT) 小節
1.1
CTFT 表格
2
離散時間傅立葉變換 (DTFT)
切換離散時間傅立葉變換 (DTFT) 小節
2.1
DTFT 表格
2.2
DTFT 屬性
3
離散傅立葉變換 (DFT)
切換離散傅立葉變換 (DFT) 小節
3.1
DFT 表格
4
Z 變換
切換 Z 變換 小節
4.1
Z 變換 表格
5
雙線性變換
6
離散餘弦變換 (DCT)
7
哈爾變換
切換目錄
數字訊號處理/變換
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外觀
移到側邊欄
隱藏
來自華夏公益教科書
<
數字訊號處理
數字訊號處理
本頁面列出了一些來自本書的變換,解釋了它們的用途,並列出了一些常用函式的變換對。
連續時間傅立葉變換 (CTFT)
[
編輯
|
編輯原始碼
]
[CTFT]
F
(
ω
)
=
∫
f
(
t
)
e
j
ω
t
d
t
{\displaystyle {\mathcal {F}}(\omega )=\int f(t)e^{j\omega t}dt}
CTFT 表格
[
編輯
|
編輯原始碼
]
時域
頻域
x
(
t
)
=
F
−
1
{
X
(
ω
)
}
{\displaystyle x(t)={\mathcal {F}}^{-1}\left\{X(\omega )\right\}}
X
(
ω
)
=
F
{
x
(
t
)
}
{\displaystyle X(\omega )={\mathcal {F}}\left\{x(t)\right\}}
1
X
(
j
ω
)
=
∫
−
∞
∞
x
(
t
)
e
−
j
ω
t
d
t
{\displaystyle X(j\omega )=\int _{-\infty }^{\infty }x(t)e^{-j\omega t}dt}
x
(
t
)
=
1
2
π
∫
−
∞
∞
X
(
ω
)
e
j
ω
t
d
ω
{\displaystyle x(t)={\frac {1}{2\pi }}\int _{-\infty }^{\infty }X(\omega )e^{j\omega t}d\omega }
2
1
{\displaystyle 1\,}
2
π
δ
(
ω
)
{\displaystyle 2\pi \delta (\omega )\,}
3
−
0.5
+
u
(
t
)
{\displaystyle -0.5+u(t)\,}
1
j
ω
{\displaystyle {\frac {1}{j\omega }}\,}
4
δ
(
t
)
{\displaystyle \delta (t)\,}
1
{\displaystyle 1\,}
5
δ
(
t
−
c
)
{\displaystyle \delta (t-c)\,}
e
−
j
ω
c
{\displaystyle e^{-j\omega c}\,}
6
u
(
t
)
{\displaystyle u(t)\,}
π
δ
(
ω
)
+
1
j
ω
{\displaystyle \pi \delta (\omega )+{\frac {1}{j\omega }}\,}
7
e
−
b
t
u
(
t
)
(
b
>
0
)
{\displaystyle e^{-bt}u(t)\,(b>0)}
1
j
ω
+
b
{\displaystyle {\frac {1}{j\omega +b}}\,}
8
cos
ω
0
t
{\displaystyle \cos \omega _{0}t\,}
π
[
δ
(
ω
+
ω
0
)
+
δ
(
ω
−
ω
0
)
]
9
cos
(
ω
0
t
+
θ
)
{\displaystyle \cos(\omega _{0}t+\theta )\,}
π
[
e
−
j
θ
δ
(
ω
+
ω
0
)
+
e
j
θ
δ
(
ω
−
ω
0
)
]
{\displaystyle \pi \left[e^{-j\theta }\delta (\omega +\omega _{0})+e^{j\theta }\delta (\omega -\omega _{0})\right]\,}
10
sin
ω
0
t
{\displaystyle \sin \omega _{0}t\,}
j
π
[
δ
(
ω
+
ω
0
)
−
δ
(
ω
−
ω
0
)
]
{\displaystyle j\pi \left[\delta (\omega +\omega _{0})-\delta (\omega -\omega _{0})\right]\,}
11
sin
(
ω
0
t
+
θ
)
{\displaystyle \sin(\omega _{0}t+\theta )\,}
j
π
[
e
−
j
θ
δ
(
ω
+
ω
0
)
−
e
j
θ
δ
(
ω
−
ω
0
)
]
{\displaystyle j\pi \left[e^{-j\theta }\delta (\omega +\omega _{0})-e^{j\theta }\delta (\omega -\omega _{0})\right]\,}
12
rect
(
t
τ
)
{\displaystyle {\mbox{rect}}\left({\frac {t}{\tau }}\right)\,}
τ
sinc
(
τ
ω
2
π
)
{\displaystyle \tau {\mbox{sinc}}\left({\frac {\tau \omega }{2\pi }}\right)\,}
13
τ
sinc
(
τ
t
2
π
)
{\displaystyle \tau {\mbox{sinc}}\left({\frac {\tau t}{2\pi }}\right)\,}
2
π
rect
(
ω
τ
)
{\displaystyle 2\pi {\mbox{rect}}\left({\frac {\omega }{\tau }}\right)\,}
14
(
1
−
2
|
t
|
τ
)
rect
(
t
τ
)
{\displaystyle \left(1-{\frac {2|t|}{\tau }}\right){\mbox{rect}}\left({\frac {t}{\tau }}\right)\,}
τ
2
sinc
2
(
τ
ω
4
π
)
{\displaystyle {\frac {\tau }{2}}{\mbox{sinc}}^{2}\left({\frac {\tau \omega }{4\pi }}\right)\,}
15
τ
2
sinc
2
(
τ
t
4
π
)
{\displaystyle {\frac {\tau }{2}}{\mbox{sinc}}^{2}\left({\frac {\tau t}{4\pi }}\right)\,}
2
π
(
1
−
2
|
ω
|
τ
)
rect
(
ω
τ
)
{\displaystyle 2\pi \left(1-{\frac {2|\omega |}{\tau }}\right){\mbox{rect}}\left({\frac {\omega }{\tau }}\right)\,}
16
e
−
a
|
t
|
,
ℜ
{
a
}
>
0
{\displaystyle e^{-a|t|},\Re \{a\}>0\,}
2
a
a
2
+
ω
2
{\displaystyle {\frac {2a}{a^{2}+\omega ^{2}}}\,}
註釋
sinc
(
x
)
=
sin
(
π
x
)
/
(
π
x
)
{\displaystyle {\mbox{sinc}}(x)=\sin(\pi x)/(\pi x)}
rect
(
t
τ
)
{\displaystyle {\mbox{rect}}\left({\frac {t}{\tau }}\right)}
是寬度為
τ
{\displaystyle \tau }
的矩形脈衝函式。
u
(
t
)
{\displaystyle u(t)}
是海維賽德階躍函式
δ
(
t
)
{\displaystyle \delta (t)}
是狄拉克δ函式
此框:
檢視
•
討論
•
編輯
離散時間傅立葉變換 (DTFT)
[
編輯
|
編輯原始碼
]
DTFT 表格
[
編輯
|
編輯原始碼
]
時域
x
[
n
]
{\displaystyle x[n]\,}
其中
n
∈
Z
{\displaystyle n\in \mathbb {Z} }
頻域
X
(
e
j
ω
)
{\displaystyle X(e^{j\omega })}
其中
ω
∈
R
{\displaystyle \omega \in \mathbb {R} }
備註
1
2
π
∫
−
π
π
X
(
e
j
ω
)
e
j
ω
n
d
ω
{\displaystyle {\frac {1}{2\pi }}\int _{-\pi }^{\pi }{X\left(e^{j\omega }\right)}e^{j\omega n}d\omega }
∑
n
=
−
∞
∞
x
[
n
]
e
−
j
ω
n
{\displaystyle \sum _{n=-\infty }^{\infty }{x[n]e^{-j\omega n}}}
定義
x
[
n
]
=
{
1
,
|
n
|
≤
M
0
,
otherwise
{\displaystyle x[n]={\begin{cases}1,&|n|\leq M\\0,&{\text{otherwise}}\end{cases}}}
sin
(
ω
(
2
M
+
1
2
)
)
sin
(
ω
2
)
{\displaystyle {\frac {\sin \left(\omega \left({\frac {2M+1}{2}}\right)\right)}{\sin \left({\frac {\omega }{2}}\right)}}}
α
n
u
[
n
]
{\displaystyle \alpha ^{n}u\left[n\right]}
1
1
−
α
e
−
j
ω
{\displaystyle {\frac {1}{1-\alpha e^{-j\omega }}}}
δ
[
n
]
{\displaystyle \delta [n]}
1
{\displaystyle 1\!}
這裡
δ
[
n
]
{\displaystyle \delta [n]}
表示 delta 函式
當
n
=
0
{\displaystyle n=0}
時為 1,否則為 0。
u
[
n
]
=
{
0
for
n
<
0
1
for
n
≥
0
{\displaystyle u[n]={\begin{cases}0&{\text{for }}n<0\\1&{\text{for }}n\geq 0\end{cases}}}
1
1
−
e
−
j
ω
+
π
∑
p
=
−
∞
∞
δ
(
ω
−
2
π
p
)
{\displaystyle {\frac {1}{1-e^{-j\omega }}}+\pi \sum _{p=-\infty }^{\infty }{\delta \left(\omega -2\pi p\right)}}
1
π
n
sin
(
W
n
)
,
0
<
W
≤
π
{\displaystyle {\frac {1}{\pi n}}\sin \left(Wn\right),\;\;\;\;0<W\leq \pi }
X
(
e
j
ω
)
=
{
1
,
|
ω
|
≤
W
0
,
W
<
|
ω
|
≤
π
{\displaystyle X(e^{j\omega })={\begin{cases}1,&|\omega |\leq W\\0,&W<|\omega |\leq \pi \end{cases}}}
X
(
e
j
ω
)
{\displaystyle X(e^{j\omega })}
是 2π 週期的
(
n
+
1
)
α
n
u
[
n
]
{\displaystyle (n+1)\alpha ^{n}u\left[n\right]}
1
(
1
−
α
e
−
j
ω
)
2
{\displaystyle {\frac {1}{(1-\alpha e^{-j\omega })^{2}}}}
DTFT 性質
[
edit
|
edit source
]
性質
時域
x
[
n
]
{\displaystyle x[n]\!}
頻域
X
(
ω
)
{\displaystyle X(\omega )\!}
備註
線性
a
x
[
n
]
+
b
y
[
n
]
{\displaystyle ax[n]+by[n]\!}
a
X
(
e
i
ω
)
+
b
Y
(
e
i
ω
)
{\displaystyle aX(e^{i\omega })+bY(e^{i\omega })\!}
時移
x
[
n
−
k
]
{\displaystyle x[n-k]\!}
X
(
e
i
ω
)
e
−
i
ω
k
{\displaystyle X(e^{i\omega })e^{-i\omega k}\!}
整數
k
頻移
x
[
n
]
e
i
a
n
{\displaystyle x[n]e^{ian}\!}
X
(
e
i
(
ω
−
a
)
)
{\displaystyle X(e^{i(\omega -a)})\!}
實數
a
時間反轉
x
[
−
n
]
{\displaystyle x[-n]\!}
X
(
e
−
i
ω
)
{\displaystyle X(e^{-i\omega })\!}
時間共軛
x
[
n
]
∗
{\displaystyle x[n]^{*}\!}
X
(
e
−
i
ω
)
∗
{\displaystyle X(e^{-i\omega })^{*}\!}
時間反轉和共軛
x
[
−
n
]
∗
{\displaystyle x[-n]^{*}\!}
X
(
e
i
ω
)
∗
{\displaystyle X(e^{i\omega })^{*}\!}
頻率導數
n
i
x
[
n
]
{\displaystyle {\frac {n}{i}}x[n]\!}
d
X
(
e
i
ω
)
d
ω
{\displaystyle {\frac {dX(e^{i\omega })}{d\omega }}\!}
頻率積分
i
n
x
[
n
]
{\displaystyle {\frac {i}{n}}x[n]\!}
∫
−
π
ω
X
(
e
i
ϑ
)
d
ϑ
{\displaystyle \int _{-\pi }^{\omega }X(e^{i\vartheta })d\vartheta \!}
時間卷積
x
[
n
]
∗
y
[
n
]
{\displaystyle x[n]*y[n]\!}
X
(
e
i
ω
)
⋅
Y
(
e
i
ω
)
{\displaystyle X(e^{i\omega })\cdot Y(e^{i\omega })\!}
時間相乘
x
[
n
]
⋅
y
[
n
]
{\displaystyle x[n]\cdot y[n]\!}
1
2
π
X
(
e
i
ω
)
∗
Y
(
e
i
ω
)
{\displaystyle {\frac {1}{2\pi }}X(e^{i\omega })*Y(e^{i\omega })\!}
相關
ρ
x
y
[
n
]
=
x
[
−
n
]
∗
∗
y
[
n
]
{\displaystyle \rho _{xy}[n]=x[-n]^{*}*y[n]\!}
R
x
y
(
ω
)
=
X
(
e
i
ω
)
∗
⋅
Y
(
e
i
ω
)
{\displaystyle R_{xy}(\omega )=X(e^{i\omega })^{*}\cdot Y(e^{i\omega })\!}
其中
∗
{\displaystyle *\!}
是兩個訊號之間的卷積。
x
[
n
]
∗
{\displaystyle x[n]^{*}\!}
是函式
x[n]
的複共軛。
ρ
x
y
[
n
]
{\displaystyle \rho _{xy}[n]\!}
表示
x[n]
和
y[n]
之間的相關性。
離散傅立葉變換 (DFT)
[
編輯
|
編輯原始碼
]
DFT 表格
[
編輯
|
編輯原始碼
]
時域
x[n]
頻域
X[k]
註釋
x
n
≡
1
N
∑
k
=
0
N
−
1
X
k
⋅
e
i
2
π
k
n
/
N
{\displaystyle x_{n}\equiv {\frac {1}{N}}\sum _{k=0}^{N-1}X_{k}\cdot e^{i2\pi kn/N}}
X
k
≡
∑
n
=
0
N
−
1
x
n
⋅
e
−
i
2
π
k
n
/
N
{\displaystyle X_{k}\equiv \sum _{n=0}^{N-1}x_{n}\cdot e^{-i2\pi kn/N}}
DFT 定義
x
n
⋅
e
i
2
π
k
n
/
N
{\displaystyle x_{n}\cdot e^{i2\pi kn/N}\,}
X
n
−
k
{\displaystyle X_{n-k}\,}
移位定理
x
n
−
k
{\displaystyle x_{n-k}\,}
X
k
⋅
e
−
i
2
π
k
n
/
N
{\displaystyle X_{k}\cdot e^{-i2\pi kn/N}}
x
n
∈
R
{\displaystyle x_{n}\in \mathbf {R} }
X
k
=
X
N
−
k
∗
{\displaystyle X_{k}=X_{N-k}^{*}\,}
實數 DFT
a
n
{\displaystyle a^{n}\,}
1
−
a
N
1
−
a
⋅
e
−
i
2
π
k
/
N
{\displaystyle {\frac {1-a^{N}}{1-a\cdot e^{-i2\pi k/N}}}}
(
N
−
1
n
)
{\displaystyle {N-1 \choose n}\,}
(
1
+
e
−
i
2
π
k
/
N
)
N
−
1
{\displaystyle \left(1+e^{-i2\pi k/N}\right)^{N-1}\,}
Z 變換
[
編輯
|
編輯原始碼
]
Z 變換表格
[
編輯
|
編輯原始碼
]
這裡
u
[
n
]
=
1
{\displaystyle u[n]=1}
對於
n
>=
0
{\displaystyle n>=0}
,
u
[
n
]
=
0
{\displaystyle u[n]=0}
對於
n
<
0
{\displaystyle n<0}
δ
[
n
]
=
1
{\displaystyle \delta [n]=1}
對於
n
=
0
{\displaystyle n=0}
,
δ
[
n
]
=
0
{\displaystyle \delta [n]=0}
否則
訊號,
x
[
n
]
{\displaystyle x[n]}
Z 變換,
X
(
z
)
{\displaystyle X(z)}
ROC
1
δ
[
n
]
{\displaystyle \delta [n]\,}
1
{\displaystyle 1\,}
all
z
{\displaystyle {\mbox{all }}z\,}
2
δ
[
n
−
n
0
]
{\displaystyle \delta [n-n_{0}]\,}
z
−
n
0
{\displaystyle z^{-n_{0}}\,}
z
≠
0
{\displaystyle z\neq 0\,}
3
u
[
n
]
{\displaystyle u[n]\,}
1
1
−
z
−
1
{\displaystyle {\frac {1}{1-z^{-1}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
4
−
u
[
−
n
−
1
]
{\displaystyle -u[-n-1]\,}
1
1
−
z
−
1
{\displaystyle {\frac {1}{1-z^{-1}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
5
n
u
[
n
]
{\displaystyle nu[n]\,}
z
−
1
(
1
−
z
−
1
)
2
{\displaystyle {\frac {z^{-1}}{(1-z^{-1})^{2}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
6
−
n
u
[
−
n
−
1
]
{\displaystyle -nu[-n-1]\,}
z
−
1
(
1
−
z
−
1
)
2
{\displaystyle {\frac {z^{-1}}{(1-z^{-1})^{2}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
7
n
2
u
[
n
]
{\displaystyle n^{2}u[n]\,}
z
−
1
(
1
+
z
−
1
)
(
1
−
z
−
1
)
3
{\displaystyle {\frac {z^{-1}(1+z^{-1})}{(1-z^{-1})^{3}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
8
−
n
2
u
[
−
n
−
1
]
{\displaystyle -n^{2}u[-n-1]\,}
z
−
1
(
1
+
z
−
1
)
(
1
−
z
−
1
)
3
{\displaystyle {\frac {z^{-1}(1+z^{-1})}{(1-z^{-1})^{3}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
9
n
3
u
[
n
]
{\displaystyle n^{3}u[n]\,}
z
−
1
(
1
+
4
z
−
1
+
z
−
2
)
(
1
−
z
−
1
)
4
{\displaystyle {\frac {z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
10
−
n
3
u
[
−
n
−
1
]
{\displaystyle -n^{3}u[-n-1]\,}
z
−
1
(
1
+
4
z
−
1
+
z
−
2
)
(
1
−
z
−
1
)
4
{\displaystyle {\frac {z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^{4}}}}
|
z
|
<
1
{\displaystyle |z|<1\,}
11
a
n
u
[
n
]
{\displaystyle a^{n}u[n]\,}
1
1
−
a
z
−
1
{\displaystyle {\frac {1}{1-az^{-1}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
12
−
a
n
u
[
−
n
−
1
]
{\displaystyle -a^{n}u[-n-1]\,}
1
1
−
a
z
−
1
{\displaystyle {\frac {1}{1-az^{-1}}}}
|
z
|
<
|
a
|
{\displaystyle |z|<|a|\,}
13
n
a
n
u
[
n
]
{\displaystyle na^{n}u[n]\,}
a
z
−
1
(
1
−
a
z
−
1
)
2
{\displaystyle {\frac {az^{-1}}{(1-az^{-1})^{2}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
14
−
n
a
n
u
[
−
n
−
1
]
{\displaystyle -na^{n}u[-n-1]\,}
a
z
−
1
(
1
−
a
z
−
1
)
2
{\displaystyle {\frac {az^{-1}}{(1-az^{-1})^{2}}}}
|
z
|
<
|
a
|
{\displaystyle |z|<|a|\,}
15
n
2
a
n
u
[
n
]
{\displaystyle n^{2}a^{n}u[n]\,}
a
z
−
1
(
1
+
a
z
−
1
)
(
1
−
a
z
−
1
)
3
{\displaystyle {\frac {az^{-1}(1+az^{-1})}{(1-az^{-1})^{3}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
16
−
n
2
a
n
u
[
−
n
−
1
]
{\displaystyle -n^{2}a^{n}u[-n-1]\,}
a
z
−
1
(
1
+
a
z
−
1
)
(
1
−
a
z
−
1
)
3
{\displaystyle {\frac {az^{-1}(1+az^{-1})}{(1-az^{-1})^{3}}}}
|
z
|
<
|
a
|
{\displaystyle |z|<|a|\,}
17
cos
(
ω
0
n
)
u
[
n
]
{\displaystyle \cos(\omega _{0}n)u[n]\,}
1
−
z
−
1
cos
(
ω
0
)
1
−
2
z
−
1
cos
(
ω
0
)
+
z
−
2
{\displaystyle {\frac {1-z^{-1}\cos(\omega _{0})}{1-2z^{-1}\cos(\omega _{0})+z^{-2}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
18
sin
(
ω
0
n
)
u
[
n
]
{\displaystyle \sin(\omega _{0}n)u[n]\,}
z
−
1
sin
(
ω
0
)
1
−
2
z
−
1
cos
(
ω
0
)
+
z
−
2
{\displaystyle {\frac {z^{-1}\sin(\omega _{0})}{1-2z^{-1}\cos(\omega _{0})+z^{-2}}}}
|
z
|
>
1
{\displaystyle |z|>1\,}
19
a
n
cos
(
ω
0
n
)
u
[
n
]
{\displaystyle a^{n}\cos(\omega _{0}n)u[n]\,}
1
−
a
z
−
1
cos
(
ω
0
)
1
−
2
a
z
−
1
cos
(
ω
0
)
+
a
2
z
−
2
{\displaystyle {\frac {1-az^{-1}\cos(\omega _{0})}{1-2az^{-1}\cos(\omega _{0})+a^{2}z^{-2}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
20
a
n
sin
(
ω
0
n
)
u
[
n
]
{\displaystyle a^{n}\sin(\omega _{0}n)u[n]\,}
a
z
−
1
sin
(
ω
0
)
1
−
2
a
z
−
1
cos
(
ω
0
)
+
a
2
z
−
2
{\displaystyle {\frac {az^{-1}\sin(\omega _{0})}{1-2az^{-1}\cos(\omega _{0})+a^{2}z^{-2}}}}
|
z
|
>
|
a
|
{\displaystyle |z|>|a|\,}
雙線性變換
[
編輯
|
編輯原始碼
]
參見
[1]
離散餘弦變換 (DCT)
[
編輯
|
編輯原始碼
]
哈爾變換
[
編輯
|
編輯原始碼
]
分類
:
書籍: 數字訊號處理
華夏公益教科書