跳轉至內容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
內容
移動到側邊欄
隱藏
開始
1
證明
切換目錄
數學著名定理/尤拉公式
1 language
বাংলা
Edit links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
Wikidata item
外觀
移動到側邊欄
隱藏
來自華夏公益教科書,開放世界開放書籍
<
數學著名定理
尤拉公式
指出,
exp
i
θ
=
i
sin
θ
+
cos
θ
{\displaystyle \exp i\theta =i\sin \theta +\cos \theta }
由此,著名的恆等式,
exp
i
π
+
1
=
0
{\displaystyle \exp i\pi +1=0}
可以推匯出來。
證明
[
編輯
|
編輯原始碼
]
定義 1
exp
φ
=
∑
n
=
0
∞
1
n
!
φ
n
{\displaystyle \exp \varphi =\sum _{n=0}^{\infty }{\frac {1}{n!}}\varphi ^{n}}
定義 2
sin
φ
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
!
φ
2
n
+
1
{\displaystyle \sin \varphi =\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)!}}\varphi ^{2n+1}}
定義 3
cos
φ
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
)
!
φ
2
n
{\displaystyle \cos \varphi =\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n)!}}\varphi ^{2n}}
以下結果將被假設;
sin
π
=
0
{\displaystyle \sin \pi =0}
cos
π
=
−
1
{\displaystyle \cos \pi =-1}
定理 1
exp
i
θ
=
cos
θ
+
i
sin
θ
{\displaystyle \exp i\theta =\cos \theta +i\sin \theta }
證明
根據定義 1,
exp
i
θ
=
∑
n
=
0
∞
1
n
!
(
i
θ
)
n
{\displaystyle \exp i\theta =\sum _{n=0}^{\infty }{\frac {1}{n!}}(i\theta )^{n}}
觀察到,可以將求和分成兩個,
exp
i
θ
=
∑
n
=
0
∞
1
(
2
n
)
!
(
i
θ
)
2
n
+
∑
n
=
0
∞
1
(
2
n
+
1
)
!
(
i
θ
)
2
n
+
1
{\displaystyle \exp i\theta =\sum _{n=0}^{\infty }{\frac {1}{(2n)!}}(i\theta )^{2n}+\sum _{n=0}^{\infty }{\frac {1}{(2n+1)!}}(i\theta )^{2n+1}}
評估,
exp
i
θ
=
∑
n
=
0
∞
i
2
n
(
2
n
)
!
θ
2
n
+
∑
n
=
0
∞
i
2
n
+
1
(
2
n
+
1
)
!
θ
2
n
+
1
{\displaystyle \exp i\theta =\sum _{n=0}^{\infty }{\frac {i^{2n}}{(2n)!}}\theta ^{2n}+\sum _{n=0}^{\infty }{\frac {i^{2n+1}}{(2n+1)!}}\theta ^{2n+1}}
exp
i
θ
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
)
!
θ
2
n
+
i
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
!
θ
2
n
+
1
{\displaystyle \exp i\theta =\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n)!}}\theta ^{2n}+i\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)!}}\theta ^{2n+1}}
根據定義 2 和 3,
exp
i
θ
=
cos
θ
+
i
sin
θ
{\displaystyle \exp i\theta =\cos \theta +i\sin \theta }
◼
{\displaystyle \blacksquare }
定理 2
exp
i
π
+
1
=
0
{\displaystyle \exp i\pi +1=0}
證明
根據定理 1,
exp
i
π
=
cos
π
+
i
sin
π
{\displaystyle \exp i\pi =\cos \pi +i\sin \pi }
exp
i
π
=
−
1
+
0
i
{\displaystyle \exp i\pi =-1+0i}
因此,
exp
i
π
+
1
=
0
{\displaystyle \exp i\pi +1=0}
◼
{\displaystyle \blacksquare }
類別
:
書籍:數學名定理
華夏公益教科書