考慮以下極限
lim x → a f ( x ) g ( x ) {\displaystyle \lim _{x\to a}{\frac {f(x)}{g(x)}}}
無法直接求值,即 f(a) = g(a) = 0 或
lim x → a f ( x ) = lim x → a g ( x ) = ∞ {\displaystyle \lim _{x\to a}f(x)=\lim _{x\to a}g(x)=\infty }
洛必達法則指出
lim x → a f ( x ) g ( x ) = lim x → a f ′ ( x ) g ′ ( x ) {\displaystyle \lim _{x\to a}{\frac {f(x)}{g(x)}}=\lim _{x\to a}{\frac {f'(x)}{g'(x)}}}
假設兩者都等於零。牛頓微分的定義是
f ′ ( a ) = lim x → a f ( x ) − f ( a ) x − a {\displaystyle f'(a)=\lim _{x\to a}{\frac {f(x)-f(a)}{x-a}}}
因此
f ′ ( a ) g ′ ( a ) = lim x → a f ( x ) − f ( a ) x − a g ( x ) − g ( a ) x − a = lim x → a f ( x ) − f ( a ) g ( x ) − g ( a ) {\displaystyle {\frac {f'(a)}{g'(a)}}=\lim _{x\to a}{\frac {\frac {f(x)-f(a)}{x-a}}{\frac {g(x)-g(a)}{x-a}}}=\lim _{x\to a}{\frac {f(x)-f(a)}{g(x)-g(a)}}}
f ′ ( a ) g ′ ( a ) = f ( a ) g ( a ) = lim x → a f ′ ( a ) g ′ ( a ) {\displaystyle {\frac {f'(a)}{g'(a)}}={\frac {f(a)}{g(a)}}=\lim _{x\to a}{\frac {f'(a)}{g'(a)}}}
現在假設 f {\displaystyle f} 和 g {\displaystyle g} 都發散到正負無窮大。微分的另一種定義是
f ′ ( a ) = lim x → 0 f ( x + a ) x {\displaystyle f'(a)=\lim _{x\to 0}{\frac {f(x+a)}{x}}}
那麼
f ′ ( a ) g ′ ( a ) = lim x → 0 x f ( x + a ) x g ( x + a ) = lim x → 0 f ( x + a ) g ( x + a ) = f ( x + a ) g ( x + a ) {\displaystyle {\frac {f'(a)}{g'(a)}}=\lim _{x\to 0}{\frac {xf(x+a)}{xg(x+a)}}=\lim _{x\to 0}{\frac {f(x+a)}{g(x+a)}}={\frac {f(x+a)}{g(x+a)}}}
證畢