分形/數學/群/巴塞利卡群
外觀



巴塞利卡群是 :[1]
多項式 的臨界點是 和 。
後臨界集是
由 GAP CAS 的 FR 包預定義。這裡 BinaryKneadingGroup("1") 是 BasilicaGroup。
gap> BinaryKneadingGroup(1/3)=BasilicaGroup; true
或
gap> B := FRGroup("a=<1,b>(1,2)","b=<1,a>",IsFRMealyElement);
<state-closed group over [ 1, 2 ] with 2 generators>
gap> AssignGeneratorVariables(B);
#I Assigned the global variables [ "a", "b" ]
gap> B=BasilicaGroup;
#I \=: converting second argument to FR element
#I \<: converting second argument to FR element
#I \<: converting second argument to FR element
#I \=: converting second argument to FR element
#I \=: converting second argument to FR element
#I \<: converting second argument to FR element
#I \<: converting second argument to FR element
#I \=: converting second argument to FR element
#I \=: converting first argument to FR element
#I \=: converting first argument to FR element
#I \=: converting first argument to FR element
#I \=: converting first argument to FR element
#I \=: converting first argument to FR element
#I \=: converting first argument to FR element
#I \=: converting first argument to FR element
#I \=: converting first argument to FR element
true
gap> Size(BasilicaGroup); infinity gap> GeneratorsOfGroup(BasilicaGroup); [ a, b ] gap> Alphabet(BasilicaGroup); [ 1, 2 ] gap> KnownAttributesOfObject(BasilicaGroup); [ "Name", "Representative", "OneImmutable", "GeneratorsOfMagma", "GeneratorsOfMagmaWithInverses", "MultiplicativeNeutralElement", "UnderlyingFRMachine", "Correspondence", "AlphabetOfFRSemigroup", "NucleusOfFRSemigroup", "FRGroupPreImageData", "KneadingSequence", "Alphabet" ] gap> KnownPropertiesOfObject(BasilicaGroup); [ "IsDuplicateFree", "IsAssociative", "IsSimpleSemigroup", "IsFinitelyGeneratedGroup", "IsStateClosed", "IsBoundedFRSemigroup", "IsAmenableGroup" ] gap> KneadingSequence(BasilicaGroup); [/ '1', '*' ]
- ↑ 詹姆斯·貝爾克、布拉德利·福雷斯特的巴塞利卡湯普森群
- ↑ R. I. Grigorchuk 和 A. Zuk (2002a)。關於由三態自動機定義的無扭弱分支群。代數與計算國際雜誌,12(1-2):223–246。幾何與組合方法在群論與半群論中的國際會議 (林肯,內布拉斯加州,2000 年)。
- ↑ 透過隨機遊走實現可交換性 洛朗·巴特霍爾迪和巴林特·維拉格 2003 年 5 月 19 日