證明: 如果
是連通的,假設
是閉集,使得
。令
和
。那麼
,因此我們發現
。然後假設
是閉開集(即開集且閉集),並且
。那麼
是兩個非平凡閉集的不交併,矛盾。最後,如果
並且
,那麼
和
都是閉開集。
例如(實數軸上的兩個不交開球是不連通的):
考慮
的子空間
,配備子空間拓撲。它是一個不連通空間的例子。
Proof: Suppose that
and
are two open subsets of
such that
and
. By definition of the subspace topology, write
and
, where
are open in
. Since
is continuous,
and
are open in
. Further,
, since any element in
would be mapped to
. Finally, every element in
is either mapped to
or to
, so that
, and
is not connected, a contradiction. 
示例(閉合單位區間是連通的):
設
帶有由
上的歐幾里得拓撲誘導的拓撲。那麼
是連通的。
Proof: Let
be two open subsets of
so that
and
. Suppose by renaming
if necessary that
.
has an infimum, say
. Since
, pick by openness of
an
such that
. Then
, so that
. Suppose that
. Then
for some
, so that in particular
, a contradiction to
. Hence
, but then pick
so that
and obtain that
, a contradiction. 
命題(拓撲空間分解成連通分量):
設
是一個拓撲空間。那麼
,
其中並集是不交的,並且每個
是其每個點的連通分量。
Proof: We prove that being contained within a common connected set is an equivalence relation, thereby proving that
is partitioned into the equivalence classes with respect to that relation, thereby proving the claim. Indeed, it is certainly reflexive and symmetric. To prove it transitive, let
and
, where
and
are connected. We claim that
is connected; once this is proven,
and
will lie in a common connected set (
). Hence, let
, where
are open with respect to the subspace topology on
, that is,
,
for suitable
that are open in
. Since
is connected,
or
since
and
. Suppose, by renaming
,
if necessary, that
, that is,
. Note that by a similar argument,
or
, but
is impossible, since then
. Hence,
and
, so that
, and
is connected. 
定義(路徑):
設
是一個拓撲空間。**路徑**是一個連續函式
,其中
。
命題(路徑的連線是連續的):
設
和
是兩條路徑。那麼
是連續的。
證明: 我們有
和
,
兩者都是連續的。我們得出結論,因為當限制在一個覆蓋空間的兩個閉合子集時連續的函式是連續的。
也就是說,一個空間是路徑連通的當且僅當在任意兩點之間存在一條路徑。
命題(路徑連通蘊含連通):
設
是一個路徑連通的拓撲空間。 那麼
也是連通的。
Proof: Suppose that
, where
are open and
. Suppose there exist
and
, so that
and
are both proper nonempty subsets of
. Then consider by path-connectedness a path
such that
and
.
is a connected subspace of
since
is a continuous image of the closed unit interval
which is connected, and
is then connected as the continuous image of a connected set, since the continuous image of a connected space is connected. On the other hand,
and
, where
and
are both open with respect to the subspace topology on
, so that
is not connected, a contradiction. 
命題(路徑連通性是等價關係):
設
是任何拓撲空間。 那麼關係
![{\displaystyle x\sim y:\Leftrightarrow \exists \gamma :[a,b]\to X{\text{ continuous }}:\gamma (a)=x,\gamma (b)=y}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b7db371e98ca587bf8393591bfe3edef0678e5f0)
是一個等價關係。
證明: 對於自反性,注意到常數函式始終是連續的。 對於對稱性,注意到如果我們給定
使得
且
,我們可以考慮路徑
,
它是連續函式的複合,並且具有以下性質:
和
。最後,每當我們有一個路徑
使得
和
,以及另一個路徑
使得
和
,那麼
是一個路徑,使得
和
,因此傳遞性成立。
這裡我們有一個關於路徑連通性意味著連通性的事實的部分逆命題。路徑連通性意味著連通性
定理(區域性路徑連通空間中連通性和路徑連通性的等價性):
設
是一個區域性路徑連通的拓撲空間。則
連通當且僅當它路徑連通。
**證明:**首先注意到路徑連通空間是連通的。然後假設
是連通的,固定
,並定義集合
.
Note that
is open, since if
, then by local path-connectedness we may pick a path-connected open neighbourhood
of
, so that by applying concatenation, we see that all points in
are in
. On the other hand,
is open, pretty much by the same argument: If
and
is a path-connected open neighbourhood of
, then
, since if
would contain a point
of
,
could be joined to
by a path, concatenating a path from
to
to one from
, in contradiction to
. Hence
is open and closed, and since
,
, so that
by connectedness. 
此定理有一個重要的應用:它證明了流形連通當且僅當它路徑連通。此外,在本書的後面,我們將瞭解更多區域性路徑連通的空間類別,例如單純復形和 CW 復形。
在上面的定義中將“連通”替換為“路徑連通”,我們得到
- 證明:只要
是一個連通拓撲空間,
是一個拓撲空間,
是一個連續函式,那麼
由
誘導的子空間拓撲是連通的。
- 證明:類似地,如果
是一個路徑連通拓撲空間,
是一個拓撲空間,
連續,那麼
由
誘導的子空間拓撲是路徑連通的。
- 證明:拓撲空間
是連通的當且僅當:當
對於
表示示性函式,唯一連續的示性函式是
和
;這裡
具有離散拓撲。
- 令
具有由
的歐幾里得拓撲誘導的子空間拓撲。證明:
不是區域性連通的,證明:
沒有連通鄰域。