跳轉至內容

群論/正規子群和諾特同構定理

來自華夏公益教科書,開放的書本,為了開放的世界

定義(正規子群):

是一個群。一個子群 被稱為正規子群 當且僅當對於每個 我們有 .

命題(不相交的正規子群的元素可交換):

是一個群,設 使得 。那麼 .

證明:。由於 是一個正規子群,,所以存在 使得 。類似地,由於 ,存在 使得 。那麼 ,因此 ,並且由於 ,我們得到 ,使得 ,並且由於 是任意的,

命題(群內直積的刻畫):

為一個群,並令 的子群。考慮由這些子群生成的群 。以下等價

  1. 函式 是一個同構
  2. 對於 ,我們有
  3. 中的每個元素都可以唯一地寫成乘積 ,其中對於 ,我們有

Proof: Certainly 1. 2., since for all , the subgroup of corresponds via to the subgroup , which is certainly normal. For 2. 3., observe that any element of may be written as a product , where and each is an element of some . But by 2., the are pairwise disjoint, so that any elements in distinct commute. Hence, we may sort the product so that the first few entries are in , the following entries are in and so on. The products of the entries that are contained within then form the element as required by the decomposition in 3. Finally, for 3. 1., observe that 3. implies that the given function is bijective. But it is also a homomorphism, because 3. immediately implies that the are disjoint, and we may use that elements of disjoint normal subgroups commute to obtain that indeed commutes with the respective group laws.

定義(子群乘積):

為一個群,並令 為子群。那麼 的 **子群乘積** 定義為

.

通常情況下,子群乘積不是一個子群。但是,如果乘積中涉及的其中一個子群是正規子群,那麼它就是

命題(子群與正規子群的子群乘積是子群):

為一個群,設 為子群,其中 之一為正規子群。那麼 都是 的子群。

證明:不失一般性,假設 為正規子群。設 ,其中 。那麼

對於某個 ,因為 為正規子群(這裡我們應用了 子群判別準則)。類似地, 是一個子群。

命題(正規子群的乘積是正規的):

為一個群,設 的正規子群。那麼 ,即 的正規子群,且對於 亦然。

證明: 由於對稱性,只需證明 是一個正規子群。事實上,設 以及 ,其中 以及 。那麼

對於某些 ,因為 是正規的。

  1. 證明正規子群的交集也是正規的。
  2. 是一個群,並且設 這樣 是兩兩互素的。證明
華夏公益教科書