跳轉到內容

博弈論導論/矩陣表示法

來自華夏公益教科書,開放的書籍,開放的世界

如果你還記得,我們所研究的遊戲 - 囚徒困境 - 需要用故事來解釋。然而,這不僅過於冗長和不精確,而且對於許多過於複雜的遊戲來說也是不可能的。顯示一個遊戲的一種簡單方法是使用遊戲矩陣

這實際上是一個效用表。效用是指一個主體(玩家)從特定結果或收益中獲得的快樂程度。

為了建立一個遊戲矩陣,我們首先需要確定效用值。我們將對玩家最不吸引人的收益分配較低的數值,對玩家最吸引人的收益分配較高的數值。最初[1],這些是我們所謂的“序數”效用值,而不是“基數”效用值。這意味著 10 的收益並不一定比 5 的收益好兩倍。事實上,在談論序數值時,以下兩個效用值列表之間沒有區別

設定 1 設定 2
Event A = Utility of 1
Event B = Utility of 2
Event C = Utility of 3
Event A = Utility of 1
Event B = Utility of 1,000,000
Event C = Utility of 230,000,000,000,000

只是第一個列表更簡潔。記住,我們從最低吸引力水平到最高吸引力水平,讓我們為囚徒困境遊戲分配收益。

10 years in jail = 1
7 years in jail  = 2
2 years in jail  = 3
Get off free   = 4

現在我們可以安排一個表,顯示每個玩家選擇不同選項時會發生什麼。

囚徒困境 玩家 2
認罪 保持沉默
玩家 1 認罪 (2,2) (4,1)
保持沉默 (1,4) (3,3)

應該很快清楚如何閱讀此表。玩家 1 有兩行,“認罪”和“保持沉默”,玩家 2 有兩列,標記相同。列和行相交的地方是收益。因此,當玩家 1 的“認罪”行與玩家 2 的“保持沉默”列相交時(就遊戲而言,當玩家 1 認罪而玩家 2 保持沉默時),收益(4,1)被分配。這意味著玩家 1(其個人收益在括號中排在首位)獲得 4 的收益 - 他最高的收益 - 玩家 2 獲得 1 的收益 - 最低的。

  1. 稍後在談論預期效用時,我們將把這些值視為“基數”。

囚徒困境 · 性別之戰

華夏公益教科書