二維逆問題/克萊因非均勻弦
外觀
< 二維逆問題
The following physical model of a vibrating inhomogeneous string (or string w/beads) by Krein provides physical/mechanical interpretation for the study of Stieltjes continued fractions, see [GK]. The model is one-dimensional, but it arises as the restriction of n-dimensional inverse problems with rotational symmetry.
The string is represented by a non-decreasing positive mass function m(x) on a possibly infinite interval [0, l]. The right end of the string is fixed. The ratio of the forced oscillation to an applied periodic force @ the left end of the string is the function of frequency, called coefficient of dynamic compliance of the string, see [KK] and [I2].
The small vertical vibration of the string is described by the following differential equation:
其中 是弦的密度,可能包括原子質量。可以用 ODE 的基本解來表達係數
其中,
The fundamental theorem of Krein and Kac, see [KK] & also [I2], essentially states that an analytic function ) is the coefficient of dynamic compliance of a string if and only if the function
是右半平面 的解析自同構,即在實正半軸上為正。Herglotz 定理完全刻畫了以下積分表示的此類函式
其中,
是閉合正半軸 上的有界變差的正測度。
- 練習(**)。 使用上面的定理,變數變換和傅立葉變換來刻畫具有旋轉不變電導率的圓盤的 Dirichlet 到 Neumann 對映集。