跳轉到內容

機率論/柯爾莫哥洛夫與現代公理及其意義

來自Wikibooks,開放世界中的開放書籍

基本定義

[編輯 | 編輯原始碼]

定義 2.1(柯爾莫哥洛夫公理):

為一個集合,設 的子集的代數。進一步設 為一個滿足以下條件的函式

  1. 以及
  2. .

則三元組 稱為機率空間

特別注意

,

因為

請注意,機率空間通常被定義為子集的代數是一個σ-代數。我們將在後面重新討論這些概念,並限制在上述定義中,這似乎很好地捕捉了機率的直觀概念。

基本定理

[編輯 | 編輯原始碼]

在下文中, 將始終是一個機率空間。

引理 2.2:

對於

.

引理 2.3:

對於

.

引理 2.4:

對於 ,

.
  • 練習 2.2.1:證明引理 2.2-2.4。
華夏公益教科書