離散均勻分佈(不要與連續均勻分佈混淆)是指等間距可能值的機率相等。在數學上,這意味著機率密度函式對於有限集中的等間距點是相同的。例如,擲一個公平的六面骰子。在這種情況下,有六個同樣可能的機率。
一種常見的規範化是將可能值限制為整數,並將可能性之間的間距限制為 1。在這種設定中,該函式的唯一兩個引數是最小值(a),最大值(b)。(有些人甚至將其進一步規範化,設定a=1。)令n=b-a+1為可能性的數量。然後機率密度函式為
令
. 然後平均值(表示為
)可以推匯出如下
![{\displaystyle \operatorname {E} [X]=\sum _{x\in S}xf(x)=\sum _{i=0}^{n-1}\left({\frac {1}{n}}(a+i)\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/bb4de36e7f67268e2ed38a0be673c55020dc9867)
![{\displaystyle \operatorname {E} [X]={1 \over n}\left(\sum _{i=0}^{n-1}a+\sum _{i=0}^{n-1}i\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cbfde9e3d28efad3fff6f414c27c671dbcbc305e)
記住,在 
![{\displaystyle \operatorname {E} [X]={1 \over n}\left(na+{(n-1)^{2}+(n-1) \over 2}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ceca833ac474df48216fea00826d596badd364a2)
![{\displaystyle \operatorname {E} [X]={2na+n^{2}-2n+1+n-1 \over 2n}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/80e42d3d0c2c51b1ed3080da1111cb11dec30bc5)
![{\displaystyle \operatorname {E} [X]={2a+n-1 \over 2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/a86f0ae9249dc07b176c3a9b91fb2bdc9f74061d)
![{\displaystyle \operatorname {E} [X]={a+b \over 2}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/001deb9056e5f1e537230569f1ae9f295e0910d8)
方差 (
) 可以推匯出
![{\displaystyle \operatorname {Var} (X)=\operatorname {E} [(X-\operatorname {E} [X])^{2}]=\sum _{x\in S}f(x)(x-E[X])^{2}=\sum _{i=0}^{n-1}\left({\frac {1}{n}}\left((a+i)-{a+b \over 2}\right)^{2}\right)}](https://wikimedia.org/api/rest_v1/media/math/render/svg/56b12fc83b04a51c7fdaaebeb18a1f0831e8dd1e)


![{\displaystyle \operatorname {Var} (X)={1 \over 4n}\left[\sum _{i=0}^{n-1}(a^{2}-2ab+b^{2})+\sum _{i=0}^{n-1}(4ai-4ib)+\sum _{i=0}^{n-1}4i^{2}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/83d922ce089bba133997418b75c7e636c325bb12)
![{\displaystyle \operatorname {Var} (X)={1 \over 4n}\left[n(a^{2}-2ab+b^{2})+4(a-b)\sum _{i=0}^{n-1}i+4\sum _{i=0}^{n-1}i^{2}\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2d9c406aa8333f46cdb4be5457301a33f76abd53)
記住在 
![{\displaystyle \operatorname {Var} (X)={1 \over 4n}\left[n(b-a)^{2}+4(a-b)[(n-1)n/2]+4[(n-1)n(2n-1)/6]\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dbacd1e083e7be5ffaae1084e1f38fcfa6ca995b)
![{\displaystyle \operatorname {Var} (X)={1 \over 4n}\left[n(n-1)^{2}-2(n-1)(n-1)n+2(n-1)n(2n-1)/3\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/46a7c8c68abae830ac2f44a56049064912fa9de7)
![{\displaystyle \operatorname {Var} (X)={1 \over 4}\left[-(n-1)^{2}+2(n-1)(2n-1)/3\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d84019b35af4a06b3bdaac9d4606c1412d0ffbe7)
![{\displaystyle \operatorname {Var} (X)={1 \over 12}\left[-3(n-1)^{2}+2(n-1)(2n-1)\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/b1039ce76e36e4d641df3e39a470bc6f1ea12aa2)
![{\displaystyle \operatorname {Var} (X)={1 \over 12}\left[-3(n^{2}-2n+1)+2(2n^{2}-3n+1)\right]}](https://wikimedia.org/api/rest_v1/media/math/render/svg/968d755bcaa7e79108755c2ff2841aabba5ea31a)
