跳轉到內容

拓撲模/哈恩-巴拿赫定理

來自華夏公益教科書,開放的書籍,為開放的世界

定理(幾何哈恩-巴拿赫定理):

為實拓撲向量空間,且 為開凸集,使得 。那麼存在一個超平面 不與 相交。

(在選擇公理的條件下。)

證明: 中所有不與 相交的向量子空間的集合是歸納的,並且非空的(因為零子空間)。因此,由佐恩引理,選取一個最大向量子空間 ,它不與 相交。斷言 是一個超平面。如果不是,則 的維度 。現在,正則對映 是開對映,因此 中的開凸集。我們考慮錐

and note that it has a nonzero boundary point; for otherwise would be clopen in which is path-connected (indeed by assumption , so that for any two points we find a 2-dimensional plane containing both, and by using a "corner point" when do lie on a line through the origin, we may connect them in , because a segment in a TVS yields a continuous path by continuity of addition and scalar multiplication), so that , which is impossible because for any in , we then have , for , so that by convexity, a contradiction. Hence, let . Then the line generated by does not intersect and hence not , and is a larger subspace of that does not intersect than in contradiction to the maximality of the latter.

華夏公益教科書