跳轉到內容

一般拓撲/同倫

來自華夏公益教科書,開放的書籍,開放的世界

定義(同倫):

是拓撲空間,令 是兩個連續對映。在 之間的同倫是一個連續對映

,使得:

(注意, 的第一個引數通常用下標表示。)如果存在這樣的 ,則函式 被稱為同倫的。

這意味著 連續地“變換”為 ,反之亦然。

定義(相對同倫):

為拓撲空間,令 為子集。如果 是另一個拓撲空間,並且如果 是連續函式,那麼 被稱為**相對於 同倫**(簡稱:)如果存在一個同倫 之間,使得對於所有 ,有

命題(相對同倫是等價關係):

如果 是一個拓撲空間, 是一個子集,並且 是另一個拓撲空間,那麼關係

上的一個等價關係。

Proof: First, note that by defining for , that is continuous, since for open, from which we gain reflexivity as also whenever . Symmetry follows upon considering, given a homotopy from to , the homotopy , which is continuous as the composition of with the continuous function ; indeed, the latter map is continuous since both of its components are; it is also a homotopy relative to , since for . Finally, note that transitivity holds, since if via the homotopy and via the homotopy , then via the homotopy

,

它是連續的,因為它在構成整個空間的兩個閉集上是 連續的,並且相對於 ,因為 都相對於

定義(收縮):

是一個拓撲空間,設 的一個子集。 的一個 **收縮** 是一個連續函式 ,使得 ,即恆等式。

定義(形變收縮):

是一個拓撲空間,設 的一個子集。 的一個 **形變收縮** 是一個連續函式 ,使得對於所有 都有 (即 )並且 是一個到 的收縮。

注意第一個引數用下標表示,因此我們不寫,而是寫

也就是說,形變縮回是恆等對映和到的縮回對映之間的同倫。

定義(同倫等價):

是拓撲空間。 之間的**同倫等價**是一對連續函式,使得

命題(形變縮回誘導同倫等價):

是拓撲空間,設 是一個子集,並設 的形變縮回。 那麼,由一對 給出同倫等價,其中 是嵌入對映。

證明: 我們有 ,它等於(因此同倫於)。此外, 之間的同倫由 本身給出。

定義(可縮空間):

為拓撲空間。 被稱為可縮空間當且僅當存在一個點 使得 的變形收縮。

命題(可縮空間是路徑連通的):

為可縮空間,它收縮到一個點 。那麼任意兩個點 可以透過一條經過 的路徑連線起來。

證明:對於任意點,如果 的變形縮回,我們得到一條從 的路徑,方式如下:

,

它作為連續函式的複合是連續的,因為對映 是連續的,因為第一項是恆等函式,第二項是常數函式。

定義(零同倫):

是拓撲空間之間的連續函式。 被稱為零同倫,當且僅當它與一個常數函式同倫,即,與一個函式 同倫,使得存在 使得對於所有的 都成立。

命題(可縮性的刻畫):

是一個拓撲空間。下列命題等價

  1. 是可縮的
  2. 上的恆等對映是零同倫的
  3. 與單點空間同倫等價
  4. 對於任意拓撲空間,任意連續函式 是零同倫的
  5. 對於每個拓撲空間 ,任何兩個連續函式 是同倫的。

Proof: Suppose first that is contractible, and let be the contraction. Then is simultaneously a homotopy between the identity and a constant map, where the latter has the value of the point onto which contracts. If the identity is homotopic to a constant map, and is the respective homotopy, then is also a deformation retraction and we conclude 3. since this deformation retraction induces a homotopy equivalence between a one-point space and . Let now be a topological space and a continuous function. Suppose further that and constitute a homotopy equivalence. Then in particular via some homotopy . But is a constant map. We then get via the homotopy , so that is nullhomotopic. Suppose now that and are two continuous functions. They will both be nullhomotopic, and if we can show that is path-connected and is the constant function to which is homotopic and for any , then they will both be homotopic to , since is homotopic to any constant map via , where is a curve from to the point of the other constant map . But is path-connected, since upon choosing , the two-point space with discrete topology, we get that the (continuous) function sending and to two points is nullhomotopic, and the homotopy yields a path between and by the way of

,其中

最後,如果從任何空間到 的任何兩個連續函式是同倫的,我們可以選擇 ,並將其中一個對映選擇為任何常數對映,另一個對映選擇為恆等對映;這兩個對映之間的同倫就產生了所需的形變收縮。

定義(同倫擴張性質):

為拓撲空間, 為子集。當且僅當對於任何拓撲空間 和任何連續函式 ,使得 與另一個對映 透過同倫 同倫,那麼存在同倫 使得

命題(透過縮回表徵同倫擴張性質):

為拓撲空間, 為子集。 具有同倫擴張性質當且僅當存在從 的縮回。

Proof: Suppose first that does have the homotopy extension property. Then pick and define by . Then is homotopic to the function via , and then by the homotopy extension property we get a homotopy of to some other function . By the form of , restricts to the identity on , and further it maps to , so that is a retraction. Suppose now that is a retract of via the function , where we define to ease notation. Let (where is some topological space) be a function and a homotopy so that . We define

並聲稱它是連續的。請注意, (它是連續的)與對映的合成

,

因此,只需證明 是連續的。為此,只需證明只要 是一個集合,使得 是開集,那麼 本身就是開集;事實上,如果是這種情況,那麼只要 的一個開子集,我們將有

is open. So suppose that has said property. We show that is open by fixing a and finding an open neighbourhood of in that is contained within . If , then we may just choose a suitable product neighbourhood since cylinders are a basis of the product topology and by the definition of the subspace topology. If and , we may just choose the set . The only remaining case is the case and . If that is the case, suppose first that , and consider the point . We write the retraction as . Since and for all , we get that , since denoting the neighbourhood filter of by , we get that converges to by continuity of (which follows from the characterisation of continuity of functions to a space with initial topology), but is contained in each set , being a neighbourhood of , since , by definition of the product topology, always contains a point of the form , where , and we conclude since is Hausdorff.

對於每個 ,我們將 定義為 的最大開子集,使得 ;由於具有此屬性的集合在並運算下是封閉的,因此存在這樣一個最大集合,我們取所有具有此屬性的集合的並集。然後定義

;

is then an open subset of . Now , since otherwise, for all we have . However, then for arbitrary and , we get that , since if , then by continuity of , we find and open with , so that , which implies in particular that . However, for , we simply have since is a retraction, and hence we get and . Hence, since , and thus implies . However, note that still ; indeed, by what was proven above, we have , and then, since is a retraction whence , we must have . We conclude that for all . Now we observe that if is the projection from to , then , since whenever so that , we find an open and an such that , and we then write , where is open, and obtain . By continuity of , we then obtain , since the preimage of the complement of will be closed in . But , so that in fact , a contradiction.

因此,選擇 使得 ; 那麼鄰域 將作為 的開鄰域,包含在 內,使用子空間和乘積拓撲的定義。

華夏公益教科書