定義(網):
令
為一個拓撲空間,令
為一個有向集。網 是一個族
.
就像濾子一樣,網是序列的模擬,它們被用來將原本只對“良好”空間成立的定理推廣到一般拓撲空間的設定中。缺點是,就像濾子一樣,涉及網的定理通常使用選擇公理。使用網還是濾子取決於個人喜好,以及選擇在給定情況下使用最少選擇公理的工具。
Proof: Suppose first that
is closed, and that
is a convergent net in
to a limit
. Suppose
. Then for all
, we find
so that at least
, which implies that
, and
since
,
. Since a set is closed if and only if it contains its boundary, we conclude that
, a contradiction. Suppose then that
contains the limit of all its convergent nets. Then let
, and note that
is a directed set, ordered by inclusion. For each
, choose
by definition of
, and observe that
forms a net convergent to
. Thus,
, and since
was arbitrary,
and
is closed. 
證明: 首先假設
是連續的,並假設
收斂於
。然後令
為
的任何開鄰域,並設
,由於
的連續性,它是開的。然後選取
使得對於所有
我們有
;對於這樣的
我們將有
,根據原像的定義。
假設現在
具有這樣的性質:如果
網收斂於
,那麼
網收斂於
。然後假設
是閉集。如果我們證明
是閉集,我們就證明了該定理。 我們只需要 證明
包含其所有網的極限。所以假設
是
中的一個網,它收斂於某個
。那麼
,因此
,所以
確實是閉集。 
Proof: Suppose first that
is compact, and let
be a net in
. Suppose that
does not have a convergent subnet. Then for each
, we find an open neighbourhood
of
and a
such that for all
, we have
; for otherwise, if
is a point so that for all open neighbourhoods
and
there exists
so that
, then we note that the set of all
(that is, the sets of all open neighbourhoods of
) forms a directed set when ordered inversely by inclusion (which shall henceforth be denoted by
). Note that we may take the product order on
, and then we may define an order morphism
by sending
. Consider the subset
so that
. We define a subnet of
as thus: Define
by
, and the order morphism induced by
, which is final since for any
, we find
so that
, when
is arbitrary. Now
converges to
, a contradiction. But then we apply compactness to the
, so that we gain points
so that
covers
. Then we choose an upper bound
of
by successively choosing an upper bound of
, then an upper bound of that upper bound and
and so on. Then for
,
is not contained in any of the
, so that in particular
, a contradiction. Conversely, if every net contains a convergent subnet, let
be an open cover of
. Suppose that it doesn't admit any finite subcover, and consider the set of all finite subfamilies of
ordered by inclusion, which is a directed set. Then define a net indexed over that set by choosing, for each finite index set
, the element
. By assumption, upon defining
to be the set of all finite subfamilies of
, we find that
has a convergent subnet
. Let
be the point to which this subnet converges, and since
is a cover, pick
so that
. Note that
is a finite subfamily of
, so that by finality of the order homomorphism
we find
so that
contains
. On the other hand, since
converges to
, we find
so that for
we have
. Finally, since
is directed, let
be an upper bound for
and
, then
contains
, but then
is not contained in
, a contradiction. 
定義(序列):
令
為一個拓撲空間。一個 **序列** 是一個以自然數的定向集為指標的網。
為了表示序列
收斂到點
,我們將使用有用的記號
.
命題(可數可列空間中用序列刻畫閉集):
令
為一個可數可列拓撲空間。則子集
是閉集當且僅當它是序列閉的。
(關於可數選擇公理的條件)
證明: 首先假設
是閉集。那麼,
中任何收斂序列的極限都一定包含在
中,因為序列是一種網,而且 網的極限對應命題在沒有選擇公理的情況下也是成立的。現在假設
是序閉集。令
; 我們要證明
。 為鄰域濾子
選擇一個可數基
。 根據可數選擇公理,對每個
選擇
。 那麼序列
收斂到
,因此
。 
命題(第一可數空間中連續性的序列判據):
設
為第一可數空間,
為拓撲空間,
為函式。則
連續當且僅當它在序列上連續。
(關於可數選擇公理的條件)
證明: 若
連續,那麼當然
只要
,因為
的鄰域
會導致
的鄰域
,
將會落在其中,當
足夠大時,然後由原像的定義
。
如果
是逐點連續的,設
是閉集,並設
;我們要證明
是閉集。設
是
中的一個序列。根據第一可數空間中序列閉包的刻畫,只需證明
是序列閉合的。因此,設
是
中的一個序列,它收斂於某個
。那麼
,因此
,因此
。 