跳轉到內容
Main menu
Main menu
move to sidebar
hide
Navigation
Main Page
Help
Browse
Cookbook
Wikijunior
Featured books
Recent changes
Random book
Using Wikibooks
Community
Reading room forum
Community portal
Bulletin Board
Help out!
Policies and guidelines
Contact us
Search
Search
Donations
Appearance
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Discussion for this IP address
目錄
移動到側邊欄
隱藏
開始
1
洛必達法則解答
切換目錄
微積分/洛必達法則/解答
Add languages
Add links
Book
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Upload file
Special pages
Permanent link
Page information
Cite this page
Get shortened URL
Download QR code
Sister projects
Wikipedia
Wikiversity
Wiktionary
Wikiquote
Wikisource
Wikinews
Wikivoyage
Commons
Wikidata
MediaWiki
Meta-Wiki
Print/export
Create a collection
Download as PDF
Printable version
In other projects
外觀
移動到側邊欄
隱藏
來自華夏公益教科書,開放的書籍,開放的世界
<
微積分
|
洛必達法則
洛必達法則解答
[
編輯
|
編輯原始碼
]
1.
lim
x
→
0
x
+
tan
x
sin
x
{\displaystyle \lim _{x\to 0}{\frac {x+\tan x}{\sin x}}}
lim
x
→
0
1
+
sec
2
x
cos
x
=
2
{\displaystyle \lim _{x\to 0}{\frac {1+\sec ^{2}x}{\cos x}}=\mathbf {2} }
lim
x
→
0
1
+
sec
2
x
cos
x
=
2
{\displaystyle \lim _{x\to 0}{\frac {1+\sec ^{2}x}{\cos x}}=\mathbf {2} }
2.
lim
x
→
π
x
−
π
sin
x
{\displaystyle \lim _{x\to \pi }{\frac {x-\pi }{\sin x}}}
lim
x
→
π
1
cos
x
=
−
1
{\displaystyle \lim _{x\to \pi }{\frac {1}{\cos x}}=\mathbf {-1} }
lim
x
→
π
1
cos
x
=
−
1
{\displaystyle \lim _{x\to \pi }{\frac {1}{\cos x}}=\mathbf {-1} }
3.
lim
x
→
0
sin
3
x
sin
4
x
{\displaystyle \lim _{x\to 0}{\frac {\sin 3x}{\sin 4x}}}
lim
x
→
0
3
cos
(
3
x
)
4
cos
(
4
x
)
=
3
4
{\displaystyle \lim _{x\to 0}{\frac {3\cos(3x)}{4\cos(4x)}}=\mathbf {\frac {3}{4}} }
lim
x
→
0
3
cos
(
3
x
)
4
cos
(
4
x
)
=
3
4
{\displaystyle \lim _{x\to 0}{\frac {3\cos(3x)}{4\cos(4x)}}=\mathbf {\frac {3}{4}} }
4.
lim
x
→
∞
x
5
e
5
x
{\displaystyle \lim _{x\to \infty }{\frac {x^{5}}{e^{5x}}}}
lim
x
→
∞
5
x
4
5
e
5
x
=
lim
x
→
∞
5
⋅
4
x
3
5
2
e
5
x
=
lim
x
→
∞
5
⋅
4
⋅
3
x
2
5
3
e
5
x
=
lim
x
→
∞
5
⋅
4
⋅
3
⋅
2
x
5
4
e
5
x
=
lim
x
→
∞
5
⋅
4
⋅
3
⋅
2
⋅
1
5
5
e
5
x
=
0
{\displaystyle {\begin{aligned}\lim _{x\to \infty }{\frac {5x^{4}}{5e^{5x}}}&=\lim _{x\to \infty }{\frac {5\cdot 4x^{3}}{5^{2}e^{5x}}}\\&=\lim _{x\to \infty }{\frac {5\cdot 4\cdot 3x^{2}}{5^{3}e^{5x}}}\\&=\lim _{x\to \infty }{\frac {5\cdot 4\cdot 3\cdot 2x}{5^{4}e^{5x}}}\\&=\lim _{x\to \infty }{\frac {5\cdot 4\cdot 3\cdot 2\cdot 1}{5^{5}e^{5x}}}\\&=\mathbf {0} \end{aligned}}}
lim
x
→
∞
5
x
4
5
e
5
x
=
lim
x
→
∞
5
⋅
4
x
3
5
2
e
5
x
=
lim
x
→
∞
5
⋅
4
⋅
3
x
2
5
3
e
5
x
=
lim
x
→
∞
5
⋅
4
⋅
3
⋅
2
x
5
4
e
5
x
=
lim
x
→
∞
5
⋅
4
⋅
3
⋅
2
⋅
1
5
5
e
5
x
=
0
{\displaystyle {\begin{aligned}\lim _{x\to \infty }{\frac {5x^{4}}{5e^{5x}}}&=\lim _{x\to \infty }{\frac {5\cdot 4x^{3}}{5^{2}e^{5x}}}\\&=\lim _{x\to \infty }{\frac {5\cdot 4\cdot 3x^{2}}{5^{3}e^{5x}}}\\&=\lim _{x\to \infty }{\frac {5\cdot 4\cdot 3\cdot 2x}{5^{4}e^{5x}}}\\&=\lim _{x\to \infty }{\frac {5\cdot 4\cdot 3\cdot 2\cdot 1}{5^{5}e^{5x}}}\\&=\mathbf {0} \end{aligned}}}
5.
lim
x
→
0
tan
x
−
x
sin
x
−
x
{\displaystyle \lim _{x\to 0}{\frac {\tan x-x}{\sin x-x}}}
lim
x
→
0
sec
2
x
−
1
cos
x
−
1
=
lim
x
→
0
2
sec
x
cos
−
2
x
sin
x
−
sin
x
=
−
2
{\displaystyle \lim _{x\to 0}{\frac {\sec ^{2}x-1}{\cos x-1}}=\lim _{x\to 0}{\frac {2\sec x\cos ^{-2}x\sin x}{-\sin x}}=\mathbf {-2} }
lim
x
→
0
sec
2
x
−
1
cos
x
−
1
=
lim
x
→
0
2
sec
x
cos
−
2
x
sin
x
−
sin
x
=
−
2
{\displaystyle \lim _{x\to 0}{\frac {\sec ^{2}x-1}{\cos x-1}}=\lim _{x\to 0}{\frac {2\sec x\cos ^{-2}x\sin x}{-\sin x}}=\mathbf {-2} }
導航
:
主頁面
·
預備微積分
·
極限
·
微分
·
積分
·
引數方程和極座標方程
·
數列和級數
·
多元微積分
·
拓展
·
參考文獻
類別
:
書籍:Calculus
華夏公益教科書