雅可比矩陣和變數替換在多元微積分中被證明非常有用,當我們想要改變變數時。它們非常有用,因為如果我們想要積分一個函式,例如
∬ R e x + y x − y d A {\displaystyle \iint _{R}e^{\frac {x+y}{x-y}}\,dA} ,其中 R {\displaystyle R} 是一個以 ( 1 , 0 ) , ( 2 , 0 ) , ( 0 , − 2 ) , ( 0 , − 1 ) {\displaystyle (1,0),(2,0),(0,-2),(0,-1)} 為頂點的梯形區域,
如果我們能將 x + y {\displaystyle x+y} 替換為 u {\displaystyle u} 以及將 x − y {\displaystyle x-y} 替換為 v {\displaystyle v} 會很有幫助,因為 e u v {\displaystyle e^{\frac {u}{v}}} 更容易積分。然而,我們需要熟悉積分、變換和雅可比行列式,後兩者將在本章中討論。
讓我們從介紹變數變換的過程開始。假設我們有一個函式 f ( x , y ) {\displaystyle f(x,y)} 。我們想要計算表示式
∬ R f ( x , y ) d A {\displaystyle \iint _{R}f(x,y)\,dA}
其中 R {\displaystyle R} 是 x y {\displaystyle xy} 平面上的一個區域。( d A {\displaystyle dA} 這裡不是微分。))
然而, R {\displaystyle R} 的面積過於複雜,無法用 x , y {\displaystyle x,y} 表示。因此,我們希望改變變數,以便更容易地表達 R {\displaystyle R} 的面積。此外,函式本身也很難積分。
如果可以將變數更改為更方便的變數,那就容易多了。假設還有兩個變數 u , v {\displaystyle u,v} 與變數 x , y {\displaystyle x,y} 存在以下關係
x = x ( u , v ) and y = y ( u , v ) . {\displaystyle x=x(u,v)\quad {\text{and}}\quad y=y(u,v).}
原始積分可以改寫為
∬ S f ( x ( u , v ) , y ( u , v ) ) | ∂ ( x , y ) ∂ ( u , v ) | d u d v {\displaystyle \iint _{S}f(x(u,v),y(u,v))\left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|\,du\,dv}
其中 S {\displaystyle S} 是 u v {\displaystyle uv} 平面中從 x y {\displaystyle xy} 平面中區域 R {\displaystyle R} 變換而來的另一個區域。本節的目的是讓我們瞭解這種變換的過程,不包括 | ∂ ( x , y ) ∂ ( u , v ) | {\displaystyle \left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|} 部分。我們將討論 | ∂ ( x , y ) ∂ ( u , v ) | {\displaystyle \left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|} 在 下一節 中的用途和意義。
事實上,我們在 R 3 {\displaystyle \mathbb {R} ^{3}} 中已經遇到了兩個變數變換的例子。
第一個例子是在積分中使用極座標,而第二個例子是在積分中使用球座標。在積分中使用極座標是一種變數變化,因為我們實際上將變數 x , y , z {\displaystyle x,y,z} 更改為 r , θ , z {\displaystyle r,\theta ,z} ,其關係為
x = r cos θ y = r sin θ z = z {\displaystyle x=r\cos \theta \quad y=r\sin \theta \quad z=z}
因此,被積函式 f ( x , y ) {\displaystyle f(x,y)} 被轉換為 f ( x ( r , θ , z ) , y ( r , θ , z ) , z ( r , θ , z ) ) {\displaystyle f(x(r,\theta ,z),y(r,\theta ,z),z(r,\theta ,z))} ,從而得到
∭ R f ( x , y , z ) d V = ∭ S f ( r cos θ , r sin θ , z ) d z r d r d θ {\displaystyle \iiint _{R}f(x,y,z)dV=\iiint _{S}f(r\cos \theta ,r\sin \theta ,z)dz\ r\ dr\ d\theta } ,這就是極座標積分公式。(稍後會證明)
第二個例子,球座標積分,提供了一個類似的解釋。原始變數 x , y , z {\displaystyle x,y,z} 和變換後的變數 ρ , θ , ϕ {\displaystyle \rho ,\theta ,\phi } 具有以下關係
{ x = ρ sin ϕ cos θ y = ρ sin ϕ sin θ z = ρ cos ϕ {\displaystyle {\begin{cases}x=\rho \sin \phi \cos \theta \\y=\rho \sin \phi \sin \theta \\z=\rho \cos \phi \end{cases}}}
這些關係可以得到
∭ R f ( x , y , z ) d V = ∭ S f ( ρ sin ϕ cos θ , ρ sin ϕ sin θ , ρ cos ϕ ) ρ 2 sin ϕ d ρ d θ d ϕ {\displaystyle \iiint _{R}f(x,y,z)dV=\iiint _{S}f(\rho \sin \phi \cos \theta ,\rho \sin \phi \sin \theta ,\rho \cos \phi )\rho ^{2}\sin \phi \ d\rho \ d\theta \ d\phi } ,這就是球座標積分公式。(稍後會證明)
我們理解了從笛卡爾座標系到極座標系和球座標系的變換。然而,這兩種變換隻是變數變換的具體例子。我們應該將範圍擴充套件到所有型別的變換。我們將不再討論特定的變換,比如 x = r cos θ , y = r sin θ and z = z {\displaystyle x=r\cos \theta ,y=r\sin \theta {\text{ and }}z=z} ,而是討論一般的變換。讓我們從兩個變數開始。
我們考慮一個由變換 T {\displaystyle T} 從 u v {\displaystyle uv} -平面到 x y {\displaystyle xy} -平面給出的變數變換。換句話說,
T ( u , v ) = ( x , y ) {\displaystyle T(u,v)=(x,y)} ,其中 ( x , y ) {\displaystyle (x,y)} 是原始或舊變數,而 ( u , v ) {\displaystyle (u,v)} 是新的變數。
在這個變換中, x , y {\displaystyle x,y} 與 u , v {\displaystyle u,v} 透過以下方程相關聯:
x = g ( u , v ) y = h ( u , v ) {\displaystyle x=g(u,v)\quad y=h(u,v)}
我們通常假設 T {\displaystyle T} 是一個 C 1 {\displaystyle C^{1}} 變換,這意味著 g , h {\displaystyle g,h} 具有連續的一階偏導數。現在,我們來介紹一些術語。
如果 T ( u 1 , v 1 ) = ( x 1 , y 1 ) {\displaystyle T(u_{1},v_{1})=(x_{1},y_{1})} ,那麼點 ( x 1 , y 1 ) {\displaystyle (x_{1},y_{1})} 被稱為點 ( u 1 , v 1 ) {\displaystyle (u_{1},v_{1})} 的像 。
如果沒有任何兩個點具有相同的像,就像函式一樣, T {\displaystyle T} 這個變換被稱為一一對應 (或單射)。
T {\displaystyle T} 將區域 S {\displaystyle S} 變換成區域 R {\displaystyle R} 。 R {\displaystyle R} 被稱為 S {\displaystyle S} 的像。這個變換可以描述為:
T ( S ) = R {\displaystyle T(S)=R}
如果 T {\displaystyle T} 是一一對應 的,那麼,就像函式一樣,它有一個逆變換 T − 1 {\displaystyle T^{-1}} 從 x y {\displaystyle xy} 平面到 u v {\displaystyle uv} 平面,關係為:
T − 1 ( R ) = S {\displaystyle T^{-1}(R)=S}
回顧一下,我們已經建立了變換 T ( S ) = R {\displaystyle T(S)=R} ,其中 S {\displaystyle S} 是 u v {\displaystyle uv} 平面中的區域,而 R {\displaystyle R} 是 x y {\displaystyle xy} 平面中的區域。如果給出區域 S {\displaystyle S} 和變換 T {\displaystyle T} ,我們預期能夠計算區域 R {\displaystyle R} 。例如,變換由以下方程定義:
x = u 2 − v 2 y = 2 u v {\displaystyle x=u^{2}-v^{2}\quad y=2uv}
求 S {\displaystyle S} 的像,其定義為 S = { ( u , v ) : 0 ≤ u ≤ 1 , 0 ≤ v ≤ 1 } {\displaystyle S=\{(u,v):0\leq u\leq 1,\ 0\leq v\leq 1\}} 。
在這種情況下,我們需要知道區域 S {\displaystyle S} 的邊界,它被以下直線限制:
u = 0 u = 1 v = 0 v = 1 {\displaystyle u=0\quad u=1\quad v=0\quad v=1}
如果我們能使用 x , y {\displaystyle x,y} 而不是 u , v {\displaystyle u,v} 來重新定義邊界,我們實際上就能找到 S {\displaystyle S} 的像。
When u = 0 ( 0 ≤ v ≤ 1 ) { x = − v 2 y = 0 (substitution) Thus, y = 0 ( − 1 ≤ x ≤ 0 ) {\displaystyle {\begin{aligned}{\text{When }}\quad &u=0\quad (0\leq v\leq 1)\\&{\begin{cases}x=-v^{2}\\y=0\\\end{cases}}\quad {\text{(substitution)}}\\{\text{Thus, }}\quad &y=0\quad (-1\leq x\leq 0)\\\end{aligned}}} When u = 1 ( 0 ≤ v ≤ 1 ) { x = 1 − v 2 y = 2 v Thus, x = 1 − y 2 4 ( 0 ≤ x ≤ 1 ) {\displaystyle {\begin{aligned}{\text{When }}\quad &u=1\quad (0\leq v\leq 1)\\&{\begin{cases}x=1-v^{2}\\y=2v\\\end{cases}}\\{\text{Thus, }}\quad &x=1-{\frac {y^{2}}{4}}\quad (0\leq x\leq 1)\\\end{aligned}}} When v = 0 ( 0 ≤ 0 ≤ 1 ) { x = u 2 y = 0 Thus, y = 0 ( 0 ≤ x ≤ 1 ) {\displaystyle {\begin{aligned}{\text{When }}\quad &v=0\quad (0\leq 0\leq 1)\\&{\begin{cases}x=u^{2}\\y=0\\\end{cases}}\\{\text{Thus, }}\quad &y=0\quad (0\leq x\leq 1)\\\end{aligned}}} When v = 1 ( 0 ≤ u ≤ 1 ) { x = u 2 − 1 y = 2 u Thus, x = y 2 4 − 1 ( − 1 ≤ x ≤ 0 ) {\displaystyle {\begin{aligned}{\text{When }}\quad &v=1\quad (0\leq u\leq 1)\\&{\begin{cases}x=u^{2}-1\\y=2u\\\end{cases}}\\{\text{Thus, }}\quad &x={\frac {y^{2}}{4}}-1\quad (-1\leq x\leq 0)\\\end{aligned}}}
因此, S {\displaystyle S} 的影像為 R = { ( x , y ) : 0 ≤ y ≤ 2 , y 2 4 − 1 ≤ x ≤ 1 − y 2 4 } {\displaystyle R=\{(x,y):0\leq y\leq 2,\ {\frac {y^{2}}{4}}-1\leq x\leq 1-{\frac {y^{2}}{4}}\}}
我們可以使用相同的方法計算 S {\displaystyle S} 從 R {\displaystyle R} .
雅可比矩陣是本章最重要的概念之一。它“補償”了當我們改變變數時面積的變化,從而使在改變變數後,積分的結果不會發生變化。回想一下,在上節的開頭,我們保留了對 | ∂ ( x , y ) ∂ ( u , v ) | {\displaystyle \left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|} 的解釋,來自 ∬ S f ( x ( u , v ) , y ( u , v ) ) | ∂ ( x , y ) ∂ ( u , v ) | d u d v {\displaystyle \iint _{S}f(x(u,v),y(u,v))\left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|\ du\ dv} 這裡。為了真正開始解釋,我們應該回顧一些基本概念。
回想一下,當我們討論 u {\displaystyle u} -替換(描述“單變數函式的替換積分”的一種簡單方法)時,我們使用以下方法來求解積分。
∫ a b f ( x ) d x = ∫ c d f ( x ( u ) ) d x d u d u where c = x ( a ) , d = x ( b ) {\displaystyle \int _{a}^{b}f(x)\ dx=\int _{c}^{d}f(x(u))\ {\frac {dx}{du}}\ du\quad {\text{where }}c=x(a),d=x(b)}
例如,
∫ sin ( ln ( x ) ) x d x {\displaystyle \int {\frac {\sin(\ln(x))}{x}}\ dx}
Let u = ln ( x ) Thus, d u d x = 1 x ⇒ d u = 1 x d x {\displaystyle {\begin{aligned}{\text{Let }}\quad &u=\ln(x)\\{\text{Thus, }}\quad &{\frac {du}{dx}}={\frac {1}{x}}\\\Rightarrow \ &du={\frac {1}{x}}dx\\\end{aligned}}}
∫ sin ( ln ( x ) ) x d x = ∫ sin ( ln ( x ) ) ( 1 x d x ) rearrangement = ∫ sin ( u ) d u let u = ln ( x ) ⟹ d u = 1 x d x = − cos ( u ) + C integration = − cos ( ln ( x ) ) + C resubstitution {\displaystyle {\begin{aligned}\int {\frac {\sin(\ln(x))}{x}}\ dx&=\int \sin(\ln(x))\ {\Big (}{\frac {1}{x}}\ dx{\Big )}&\quad {\text{rearrangement}}\\&=\int \sin(u)\ du&\quad {\text{let }}u=\ln(x)\implies du={\frac {1}{x}}\ dx\\&=-\cos(u)+C&\quad {\text{integration}}\\&=-\cos(\ln(x))+C&\quad {\text{resubstitution}}\\\end{aligned}}}
如果我們在積分中新增端點,結果將是
∫ e e 2 sin ( ln ( x ) ) x d x = ∫ e e 2 sin ( ln ( x ) ) ( 1 x d x ) rearrangement = ∫ 1 2 sin ( u ) d u remember u = ln ( x ) and d u = 1 x d x = [ − cos ( u ) ] 1 2 integration = cos ( 1 ) − cos ( 2 ) {\displaystyle {\begin{aligned}\int _{e}^{e^{2}}{\frac {\sin(\ln(x))}{x}}\ dx&=\int _{e}^{e^{2}}\sin(\ln(x))\ {\Big (}{\frac {1}{x}}\ dx{\Big )}&\quad {\text{rearrangement}}\\&=\int _{1}^{2}\sin(u)\ du&\quad {\text{remember }}u=\ln(x){\text{ and }}du={\frac {1}{x}}\ dx\\&={\Big [}-\cos(u){\Big ]}_{1}^{2}&\quad {\text{integration}}\\&=\cos(1)-\cos(2)\\\end{aligned}}}
如果我們仔細觀察解中的“重排”和“記住”部分,我們會發現我們有效地將我們的變數從 x {\displaystyle x} 更改為 u {\displaystyle u} 透過這種方法
∫ a b f ( x ) d x = ∫ x = a x = b f ( x ( u ) ) d ( x ( u ) ) = ∫ u = x ( a ) u = x ( b ) f ( x ( u ) ) d x d u d u {\displaystyle \int _{a}^{b}f(x)dx=\int _{x=a}^{x=b}f(x(u))\ d(x(u))=\int _{u=x(a)}^{u=x(b)}f(x(u))\ {\frac {dx}{du}}\ du} ,這就是我們上面提到的。
術語 d x d u {\displaystyle {\frac {dx}{du}}} 的出現不僅是演繹的數學產物,而且具有直觀的意義。當我們將函式從 f ( x ) {\displaystyle f(x)} 更改為 f ( x ( u ) ) {\displaystyle f(x(u))} 時,我們也 改變了積分割槽域 ,這可以透過檢視端點來觀察。這種區域的變化要麼被 “拉伸” ,要麼被 “壓縮” ,其因子為 d u d x {\displaystyle {\frac {du}{dx}}} 。為了抵消這種變化, d x d u {\displaystyle {\frac {dx}{du}}} 被推匯出以進行折衷(回想一下 d x d u ( d u d x ) = 1 {\displaystyle {\frac {dx}{du}}\left({\frac {du}{dx}}\right)=1} )。我們可以簡單地將此項視為一個折衷因子,它抵消了由於變數變化而引起的區域變化。
現在,讓我們將注意力重新集中到兩個變數上。如果我們將變數從 x , y {\displaystyle x,y} 更改為 u , v {\displaystyle u,v} ,我們也 改變了積分割槽域 ,如上一節所述。
所以,繼續我們的思路,應該也存在一個推匯出的項來抵消區域的變化。換句話說
∬ R f ( x , y ) d A 1 = ∬ S f ( x ( u , v ) , y ( u , v ) ) d A 1 d A 2 ⏟ informal term d A 2 {\displaystyle \iint _{R}f(x,y)\,dA_{1}=\iint _{S}f(x(u,v),y(u,v))\underbrace {\frac {dA_{1}}{dA_{2}}} _{\text{informal term}}\,dA_{2}}
請注意,這裡使用的符號僅用於 直觀目的 ,並非官方使用。官方術語將在本章稍後介紹,但目前,我們使用這些術語以便更好地理解。
在這種情況下,當我們將函式從 f ( x , y ) {\displaystyle f(x,y)} 更改為 f ( x ( u ) , y ( u ) ) {\displaystyle f(x(u),y(u))} 時,我們“拉伸” 或“壓縮” 了我們區域的面積,其比例為 d A 2 d A 1 {\displaystyle {\frac {dA_{2}}{dA_{1}}}} ;因此,我們需要用一個比例因子 d A 1 d A 2 {\displaystyle {\frac {dA_{1}}{dA_{2}}}} 來抵消這種變化。對於兩個變數的雅可比矩陣本質上是用於計算 d A 1 d A 2 {\displaystyle {\frac {dA_{1}}{dA_{2}}}} 的表示式,它是用 u , v {\displaystyle u,v} 表示的,這樣我們就可以在變換後對新的積分進行積分,因為新的積分中涉及的函式只能用 u , v {\displaystyle u,v} 表示,而不能用 x , y {\displaystyle x,y} 表示(我們需要用 u , v {\displaystyle u,v} 來表示 x {\displaystyle x} 和 y {\displaystyle y} )。
現在,我們來推導雅可比矩陣。在上面的回顧中,我們已經非正式地 確定了兩個變數的雅可比矩陣基本上是 d A 1 d A 2 {\displaystyle {\frac {dA_{1}}{dA_{2}}}} ,其中 d A 1 {\displaystyle dA_{1}} 是 x y {\displaystyle xy} 平面中區域 R {\displaystyle R} 中的無窮小面積,而 d A 2 {\displaystyle dA_{2}} 是 u v {\displaystyle uv} 平面中區域 S {\displaystyle S} 中的無窮小面積。由於我們將變數從 x , y {\displaystyle x,y} 更改為 u , v {\displaystyle u,v} ,我們應該用 u , v {\displaystyle u,v} 在 u v {\displaystyle uv} 平面中的某個區域上描述 d A 1 {\displaystyle dA_{1}} 和 d A 2 {\displaystyle dA_{2}} 。
讓我們先從 d A 2 {\displaystyle dA_{2}} 開始,因為它更容易計算。我們從一個小的矩形 S 0 {\displaystyle S_{0}} 開始,它是 S {\displaystyle S} 的一部分,位於 u v {\displaystyle uv} -平面上,其左下角為點 ( u 0 , v 0 ) {\displaystyle (u_{0},v_{0})} ,其尺寸為 Δ u , Δ v {\displaystyle \Delta u,\Delta v} 。因此, S 0 {\displaystyle S_{0}} 的面積為
Δ A 2 = Δ u Δ v {\displaystyle \Delta A_{2}=\Delta u\Delta v}
S 0 {\displaystyle S_{0}} 的影像,在本例中我們將其命名為 R 0 {\displaystyle R_{0}} ,位於 x y {\displaystyle xy} -平面上,根據變換 T ( S 0 ) = R 0 {\displaystyle T(S_{0})=R_{0}} 。它的邊界點之一是 ( x 0 , y 0 ) = T ( u 0 , v 0 ) {\displaystyle (x_{0},y_{0})=T(u_{0},v_{0})} 。我們可以使用向量 r {\displaystyle \mathbf {r} } 來描述 R 0 {\displaystyle R_{0}} 的點 ( u , v ) {\displaystyle (u,v)} 的位置向量。換句話說, r {\displaystyle \mathbf {r} } 可以描述區域 R 0 {\displaystyle R_{0}} ,鑑於
r ( u , v ) = x ( u , v ) i + y ( u , v ) j where u 0 ≤ u ≤ u 0 + Δ u , v 0 ≤ v ≤ v 0 + Δ v {\displaystyle \mathbf {r} (u,v)=x(u,v)\mathbf {i} +y(u,v)\mathbf {j} \quad {\text{where }}u_{0}\leq u\leq u_{0}+\Delta u,\ v_{0}\leq v\leq v_{0}+\Delta v}
區域 R 0 {\displaystyle R_{0}} 現在可以用 u , v {\displaystyle u,v} 來描述。下一步是利用位置向量 r ( u , v ) {\displaystyle \mathbf {r} (u,v)} 計算它的面積 d A 1 {\displaystyle dA_{1}} .
變換 R 0 = T ( S 0 ) {\displaystyle R_{0}=T(S_{0})} 後,區域 R 0 {\displaystyle R_{0}} 的形狀可以近似為平行四邊形。我們知道,平行四邊形的面積定義為底乘以高。然而,這個定義並不能幫助我們進行計算。相反,我們將使用叉積來確定它的面積。回想一下,由向量 a {\displaystyle \mathbf {a} } 和 b {\displaystyle \mathbf {b} } 形成的平行四邊形的面積可以透過取這兩個向量的叉積的模長來計算。
Δ A 1 = | a × b | {\displaystyle \Delta A_{1}=|\mathbf {a} \times \mathbf {b} |}
在這個平行四邊形中,兩個向量 a {\displaystyle \mathbf {a} } 和 b {\displaystyle \mathbf {b} } 是用 u , v {\displaystyle u,v} 表示的
a = r ( u 0 + Δ u , v 0 ) − r ( u 0 , v 0 ) and b = r ( u 0 , v 0 + Δ v ) − r ( u 0 , v 0 ) {\displaystyle \mathbf {a} =\mathbf {r} (u_{0}+\Delta u,v_{0})-\mathbf {r} (u_{0},v_{0})\quad {\text{ and }}\quad \mathbf {b} =\mathbf {r} (u_{0},v_{0}+\Delta v)-\mathbf {r} (u_{0},v_{0})}
這看起來非常類似於偏導數的定義
r u = lim Δ u → 0 r ( u 0 + Δ u , v 0 ) − r ( u 0 , v 0 ) Δ u and r v = lim Δ v → 0 r ( u 0 , v 0 + Δ v ) − r ( u 0 , v 0 ) Δ v {\displaystyle \mathbf {r} _{u}=\lim _{\Delta u\rightarrow 0}{\frac {\mathbf {r} (u_{0}+\Delta u,v_{0})-\mathbf {r} (u_{0},v_{0})}{\Delta u}}\quad {\text{ and }}\quad \mathbf {r} _{v}=\lim _{\Delta v\rightarrow 0}{\frac {\mathbf {r} (u_{0},v_{0}+\Delta v)-\mathbf {r} (u_{0},v_{0})}{\Delta v}}}
因此,我們可以近似地認為
a = r ( u 0 + Δ u , v 0 ) − r ( u 0 , v 0 ) ≈ Δ u r u and b = r ( u 0 , v 0 + Δ v ) − r ( u 0 , v 0 ) ≈ Δ v r v {\displaystyle {\begin{aligned}&\mathbf {a} =\mathbf {r} (u_{0}+\Delta u,v_{0})-\mathbf {r} (u_{0},v_{0})\approx \Delta u\mathbf {r} _{u}\quad {\text{ and }}\quad \\&\mathbf {b} =\mathbf {r} (u_{0},v_{0}+\Delta v)-\mathbf {r} (u_{0},v_{0})\approx \Delta v\mathbf {r} _{v}\\\end{aligned}}}
現在,我們計算 r u , r v {\displaystyle \mathbf {r} _{u},\mathbf {r} _{v}} ,考慮到 r ( u , v ) = x ( u , v ) i + y ( u , v ) j {\displaystyle \mathbf {r} (u,v)=x(u,v)\mathbf {i} +y(u,v)\mathbf {j} }
r u = x u ( u , v ) i + y u ( u , v ) j = ∂ x ∂ u i + ∂ y ∂ u j and r v = x v ( u , v ) i + y v ( u , v ) j = ∂ x ∂ v i + ∂ y ∂ v j {\displaystyle {\begin{aligned}&\mathbf {r} _{u}=x_{u}(u,v)\ \mathbf {i} +y_{u}(u,v)\ \mathbf {j} ={\frac {\partial x}{\partial u}}\ \mathbf {i} +{\frac {\partial y}{\partial u}}\ \mathbf {j} \quad {\text{ and }}\\&\mathbf {r} _{v}=x_{v}(u,v)\ \mathbf {i} +y_{v}(u,v)\ \mathbf {j} ={\frac {\partial x}{\partial v}}\ \mathbf {i} +{\frac {\partial y}{\partial v}}\ \mathbf {j} \\\end{aligned}}}
我們可以計算 Δ A 1 = | | a × b | | {\displaystyle \Delta A_{1}=||\mathbf {a} \times \mathbf {b} ||} (我們取絕對值以防止出現負面積)。您可以檢視第7.1 章中的叉積。請注意,|| 內部的豎線用於計算大小(或範數),而 || 外部的豎線用於取絕對值。
Δ A 1 = | | a × b | | = | | ( Δ u r u ) × ( Δ v r v ) | | approximation = | | r u × r v | | Δ u Δ v = | | det ( i j k ∂ x ∂ u ∂ y ∂ u 0 ∂ x ∂ v ∂ y ∂ v 0 ) | | Δ u Δ v cross product = | | det ( ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ) k | | Δ u Δ v evaluation = | det ( ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ) | k | ⏟ 1 | Δ u Δ v {\displaystyle {\begin{aligned}\Delta A_{1}&=||\mathbf {a} \times \mathbf {b} ||\\&=||(\Delta u\ \mathbf {r} _{u})\times (\Delta v\ \mathbf {r} _{v})||&\quad {\text{approximation}}\\&=||\mathbf {r} _{u}\times \mathbf {r} _{v}||\Delta u\Delta v\\&={\begin{vmatrix}{\begin{vmatrix}\det {\begin{pmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\{\frac {\partial x}{\partial u}}&{\frac {\partial y}{\partial u}}&0\\{\frac {\partial x}{\partial v}}&{\frac {\partial y}{\partial v}}&0\\\end{pmatrix}}\\\end{vmatrix}}\end{vmatrix}}\Delta u\Delta v&\quad {\text{cross product}}\\&={\begin{vmatrix}{\begin{vmatrix}\det {\begin{pmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}\\\end{pmatrix}}\mathbf {k} \end{vmatrix}}\end{vmatrix}}\Delta u\Delta v&\quad {\text{evaluation}}\\&={\begin{vmatrix}\det {\begin{pmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}\\\end{pmatrix}}\underbrace {|\mathbf {k} |} _{1}\end{vmatrix}}\Delta u\Delta v\\\end{aligned}}}
然後,我們可以代入我們新推導的項。
Δ A 1 Δ A 2 = | det ( ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ) | Δ u Δ v Δ u Δ v = | det ( ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v ) | = | ∂ x ∂ u ∂ y ∂ v − ∂ x ∂ v ∂ y ∂ u | {\displaystyle {\frac {\Delta A_{1}}{\Delta A_{2}}}={\frac {{\begin{vmatrix}\det {\begin{pmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}\\\end{pmatrix}}\end{vmatrix}}\Delta u\Delta v}{\Delta u\Delta v}}={\begin{vmatrix}\det {\begin{pmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}\\\end{pmatrix}}\end{vmatrix}}=\left|{\frac {\partial x}{\partial u}}{\frac {\partial y}{\partial v}}-{\frac {\partial x}{\partial v}}{\frac {\partial y}{\partial u}}\right|}
最後,我們推匯出雅可比行列式的絕對值 。雅可比行列式的定義如下
然後,我們將在積分變數替換中使用雅可比行列式。新增絕對值是為了防止出現負面積。
∬ R f ( x , y ) d A ≈ ∑ i = 1 m ∑ j = 1 n f ( x i , y j ) Δ A ≈ ∑ i = 1 m ∑ j = 1 n f ( x ( u i , v j ) , y ( u i , v j ) ) Δ A 2 Since Δ A 2 ≈ | ∂ ( x , y ) ∂ ( u , v ) | Δ u Δ v ∑ i = 1 m ∑ j = 1 n f ( x ( u i , v j ) , y ( u i , v j ) ) Δ A 2 ≈ ∑ i = 1 m ∑ j = 1 n f ( x ( u i , v j ) , y ( u i , v j ) ) | ∂ ( x , y ) ∂ ( u , v ) | Δ u Δ v ≈ ∬ S f ( x ( u , v ) , y ( u , v ) ) | ∂ ( x , y ) ∂ ( u , v ) | d u d v {\displaystyle {\begin{aligned}\iint _{R}f(x,y)\,dA&\approx \sum _{i=1}^{m}\sum _{j=1}^{n}f(x_{i},y_{j})\Delta A\\&\approx \sum _{i=1}^{m}\sum _{j=1}^{n}f(x(u_{i},v_{j}),y(u_{i},v_{j}))\Delta A_{2}\\{\text{Since }}&\Delta A_{2}\approx \left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|\Delta u\Delta v\\\sum _{i=1}^{m}\sum _{j=1}^{n}f(x(u_{i},v_{j}),y(u_{i},v_{j}))\Delta A_{2}&\approx \sum _{i=1}^{m}\sum _{j=1}^{n}f(x(u_{i},v_{j}),y(u_{i},v_{j}))\ \left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|\Delta u\Delta v\\&\approx \iint _{S}f(x(u,v),y(u,v))\ \left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|\ du\ dv\\\end{aligned}}}
以下是二重積分變數替換定理,我們已經 直觀地解釋 了為什麼以及如何起作用,但上述解釋 並非 證明 該定理。具體來說,我們進行了一些近似,而以下定理中的表述是 等式 ,而不是近似。 實際的 證明 非常複雜且高階,因此這裡不包括。
定理. (二重積分的變數替換)假設 T {\displaystyle T} 是一個 C 1 {\displaystyle C^{1}} 變換,其雅可比行列式不為零,並且將 u v {\displaystyle uv} 平面上的區域 S {\displaystyle S} 單射對映到 x y {\displaystyle xy} 平面上的區域 R {\displaystyle R} ,透過變數替換 x = x ( u , v ) {\displaystyle x=x(u,v)} 和 y = y ( u , v ) {\displaystyle y=y(u,v)} 。假設 f {\displaystyle f} 在 R {\displaystyle R} 上連續,我們有 ∬ R f ( x , y ) d x d y = ∬ S f ( x ( u , v ) , y ( u , v ) ) | ∂ ( x , y ) ∂ ( u , v ) | d u d v {\displaystyle \iint _{R}f(x,y)\,dx\,dy=\iint _{S}f(x(u,v),y(u,v))\left|{\frac {\partial (x,y)}{\partial (u,v)}}\right|\,du\,dv}
備註.
如果我們改變一些符號,我們可以得到 ∬ S f ( u ( x , y ) , v ( x , y ) ) | ∂ ( u , v ) ∂ ( x , y ) | d x d y = ∬ R f ( u , v ) d u d v , {\displaystyle \iint _{S}f(u(x,y),v(x,y))\left|{\frac {\partial (u,v)}{\partial (x,y)}}\right|\,dx\,dy=\iint _{R}f(u,v)\,du\,dv,} (在這種情況下, T {\displaystyle T} 將 x y {\displaystyle xy} 平面上的區域 S {\displaystyle S} 對映到 u v {\displaystyle uv} 平面上的區域 R {\displaystyle R} 。)有時可能是一個更方便的形式。
證明。
Let u = x + y {\displaystyle u=x+y} and v = y x {\displaystyle v={\frac {y}{x}}} , and D ′ {\displaystyle D'} be the transformed region via these changes of variables. Solving these two equations, { u = x + y v = y x ⟹ { y = u − x v = y x ⟹ v = u − x x ⟹ x = u v + 1 ⟹ y = u − u v + 1 = u v v + 1 . {\displaystyle {\begin{cases}u=x+y\\v={\frac {y}{x}}\end{cases}}\implies {\begin{cases}y=u-x\\v={\frac {y}{x}}\end{cases}}\implies v={\frac {u-x}{x}}\implies x={\frac {u}{v+1}}\implies y=u-{\frac {u}{v+1}}={\frac {uv}{v+1}}.} Therefore, the Jacobian for this transformation is ∂ ( x , y ) ∂ ( u , v ) = | ∂ x ∂ u ∂ x ∂ v ∂ y ∂ u ∂ y ∂ v | = | 1 v + 1 − u ( v + 1 ) 2 v v + 1 ( v + 1 ) u − u v ( v + 1 ) 2 | = 1 v + 1 ⋅ u ( v + 1 ) 2 − − u ( v + 1 ) 2 ⋅ v v + 1 = u + u v ( v + 1 ) 3 = u ( v + 1 ) 2 . {\displaystyle {\frac {\partial (x,y)}{\partial (u,v)}}={\begin{vmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}\end{vmatrix}}={\begin{vmatrix}{\frac {1}{v+1}}&{\frac {-u}{(v+1)^{2}}}\\{\frac {v}{v+1}}&{\frac {(v+1)u-uv}{(v+1)^{2}}}\end{vmatrix}}={\frac {1}{v+1}}\cdot {\frac {u}{(v+1)^{2}}}-{\frac {-u}{(v+1)^{2}}}\cdot {\frac {v}{v+1}}={\frac {u+uv}{(v+1)^{3}}}={\frac {u}{(v+1)^{2}}}.} Also, the bounds for x + y {\displaystyle x+y} and y x {\displaystyle {\frac {y}{x}}} in D {\displaystyle D} are 2 ≤ x + y ≤ 3 {\displaystyle 2\leq x+y\leq 3} and 4 ≤ y x ≤ 5 {\displaystyle 4\leq {\frac {y}{x}}\leq 5} . So, the bounds for u {\displaystyle u} and v {\displaystyle v} in D ′ {\displaystyle D'} are 2 ≤ u ≤ 3 {\displaystyle 2\leq u\leq 3} and 4 ≤ v ≤ 5 {\displaystyle 4\leq v\leq 5} . Thus, the desired integral is ∬ D y ( x + y ) x d x = ∫ 4 5 ∫ 2 3 ( u v ⋅ u ( v + 1 ) 2 ⏟ > 0 because of the bounds ) d u d v = ∫ 4 5 v ( v + 1 ) 2 ( 3 3 3 − 2 3 3 ) d v = 19 3 ∫ 4 + 1 5 + 1 w − 1 w 2 d w let w = v + 1 ⟹ d w = d v = 19 3 [ ln | w | − 1 w ] 5 6 = 19 3 ( ln 6 − ln 5 + 1 30 ) = 19 3 ( ln ( 6 5 ) + 1 30 ) by properties of logarithm {\displaystyle {\begin{aligned}\iint _{D}{\frac {y(x+y)}{x}}dx&=\int _{4}^{5}\int _{2}^{3}\left(uv\cdot \underbrace {\frac {u}{(v+1)^{2}}} _{>0{\text{ because of the bounds}}}\right)\,du\,dv\\&=\int _{4}^{5}{\frac {v}{(v+1)^{2}}}\left({\frac {3^{3}}{3}}-{\frac {2^{3}}{3}}\right)\,dv\\&={\frac {19}{3}}\int _{4+1}^{5+1}{\frac {w-1}{w^{2}}}\,dw\qquad {\text{let }}w=v+1\implies dw=dv\\&={\frac {19}{3}}\left[\ln |w|-{\frac {1}{w}}\right]_{5}^{6}\\&={\frac {19}{3}}\left(\ln 6-\ln 5+{\frac {1}{30}}\right)\\&={\frac {19}{3}}\left(\ln \left({\frac {6}{5}}\right)+{\frac {1}{30}}\right)\qquad {\text{by properties of logarithm}}\end{aligned}}}
如果我們繼續思考,我們也可以找到三個變數的雅可比行列式。假設有一個函式 f ( x , y , z ) {\displaystyle f(x,y,z)} 。 x , y , z {\displaystyle x,y,z} 與 u , v , w {\displaystyle u,v,w} 有關,它們是
x = x ( u , v , w ) , y = y ( u , v , w ) , and z = z ( u , v , w ) {\displaystyle x=x(u,v,w),\quad y=y(u,v,w),\quad {\text{and}}\quad z=z(u,v,w)}
R {\displaystyle R} 是 x y z {\displaystyle xyz} -空間中的一個區域,而 S {\displaystyle S} 是 u v w {\displaystyle uvw} -空間中的一個區域,變換 T ( S ) = R {\displaystyle T(S)=R} 。
為了計算三個變數的雅可比行列式,我們進行類似的過程。變換過程將是:將 u v w {\displaystyle uvw} -空間中尺寸為 Δ u , Δ v , Δ w {\displaystyle \Delta u,\Delta v,\Delta w} 的長方體變換到 x y z {\displaystyle xyz} -空間中的平行六面體,體積為 Δ V 2 = Δ u Δ v Δ w {\displaystyle \Delta V_{2}=\Delta u\Delta v\Delta w} 。平行六面體可以用位置向量描述
r ( u , v , w ) = x ( u , v , w ) i + y ( u , v , w ) j + z ( u , v , w ) k {\displaystyle \mathbf {r} (u,v,w)=x(u,v,w)\ \mathbf {i} +y(u,v,w)\ \mathbf {j} +z(u,v,w)\ \mathbf {k} }
平行六面體的三個邊可以用位置向量描述為
a = r ( u + Δ u , v , w ) − r ( u , v , w ) , b = r ( u , v + Δ v , w ) − r ( u , v , w ) , and c = r ( u , v , w + Δ w ) − r ( u , v , w ) . {\displaystyle {\begin{aligned}&\mathbf {a} =\mathbf {r} (u+\Delta u,v,w)-\mathbf {r} (u,v,w),\\&\mathbf {b} =\mathbf {r} (u,v+\Delta v,w)-\mathbf {r} (u,v,w),\quad {\text{and}}\\&\mathbf {c} =\mathbf {r} (u,v,w+\Delta w)-\mathbf {r} (u,v,w).\\\end{aligned}}}
由於 r {\displaystyle \mathbf {r} } 的導數定義為
r u = lim Δ u → 0 r ( u + Δ u , v , w ) − r ( u , v , w ) Δ u , r v = lim Δ v → 0 r ( u , v + Δ v , w ) − r ( u , v , w ) Δ v , and r w = lim Δ w → 0 r ( u , v , w + Δ w ) − r ( u , v , w ) Δ w . {\displaystyle {\begin{aligned}&\mathbf {r} _{u}=\lim _{\Delta u\rightarrow 0}{\frac {\mathbf {r} (u+\Delta u,v,w)-\mathbf {r} (u,v,w)}{\Delta u}},\\&\mathbf {r} _{v}=\lim _{\Delta v\rightarrow 0}{\frac {\mathbf {r} (u,v+\Delta v,w)-\mathbf {r} (u,v,w)}{\Delta v}},\quad {\text{and}}\\&\mathbf {r} _{w}=\lim _{\Delta w\rightarrow 0}{\frac {\mathbf {r} (u,v,w+\Delta w)-\mathbf {r} (u,v,w)}{\Delta w}}.\\\end{aligned}}}
三個向量 a , b , c {\displaystyle \mathbf {a} ,\mathbf {b} ,\mathbf {c} } 可以類似地近似為
a ≈ Δ u r u , b ≈ Δ v r v , and c ≈ Δ w r w {\displaystyle \mathbf {a} \approx \Delta u\ \mathbf {r} _{u},\quad \mathbf {b} \approx \Delta v\ \mathbf {r} _{v},\quad {\text{and}}\quad \mathbf {c} \approx \Delta w\ \mathbf {r} _{w}}
由於位置向量 r {\displaystyle \mathbf {r} } 是 r ( u , v , w ) = x ( u , v , w ) i + y ( u , v , w ) j + z ( u , v , w ) k {\displaystyle \mathbf {r} (u,v,w)=x(u,v,w)\ \mathbf {i} +y(u,v,w)\ \mathbf {j} +z(u,v,w)\ \mathbf {k} } , r {\displaystyle \mathbf {r} } 的偏導數為
r u = ∂ x ∂ u i + ∂ y ∂ u j + ∂ z ∂ u k , r v = ∂ x ∂ v i + ∂ y ∂ v j + ∂ z ∂ v k , and r v = ∂ x ∂ w i + ∂ y ∂ w j + ∂ z ∂ w k {\displaystyle {\begin{aligned}&\mathbf {r} _{u}={\frac {\partial x}{\partial u}}\ \mathbf {i} +{\frac {\partial y}{\partial u}}\ \mathbf {j} +{\frac {\partial z}{\partial u}}\ \mathbf {k} ,\\&\mathbf {r} _{v}={\frac {\partial x}{\partial v}}\ \mathbf {i} +{\frac {\partial y}{\partial v}}\ \mathbf {j} +{\frac {\partial z}{\partial v}}\ \mathbf {k} ,\quad {\text{and}}\\&\mathbf {r} _{v}={\frac {\partial x}{\partial w}}\ \mathbf {i} +{\frac {\partial y}{\partial w}}\ \mathbf {j} +{\frac {\partial z}{\partial w}}\ \mathbf {k} \\\end{aligned}}}
回想一下,由向量 a , b , c {\displaystyle \mathbf {a} ,\mathbf {b} ,\mathbf {c} } 確定的平行六面體的體積是它們標量三重積的模
V = | ( a × b ) ⋅ c | {\displaystyle V=|(\mathbf {a} \times \mathbf {b} )\ \cdot \ \mathbf {c} |}
我們只需要將向量替換為我們得到的向量。
Δ V 1 = | ( a × b ) ⋅ c | = | ( Δ u r u ) × ( Δ v r v ) ⋅ Δ w r w | = | r u × r v ⋅ r w | Δ u Δ v Δ w = | | i j k ∂ x ∂ u ∂ y ∂ u ∂ z ∂ u ∂ x ∂ v ∂ y ∂ v ∂ z ∂ v | ⋅ ( ∂ x ∂ w ∂ y ∂ w ∂ z ∂ w ) | Δ u Δ v Δ w cross product = | ( ∂ y ∂ u ∂ z ∂ v − ∂ z ∂ u ∂ y ∂ v ∂ z ∂ u ∂ x ∂ v − ∂ x ∂ u ∂ z ∂ v ∂ x ∂ u ∂ y ∂ v − ∂ y ∂ u ∂ x ∂ v ) ⋅ ( ∂ x ∂ w ∂ y ∂ w ∂ z ∂ w ) | Δ u Δ v Δ w = | ∂ x ∂ w ∂ y ∂ u ∂ z ∂ v − ∂ x ∂ w ∂ y ∂ v ∂ z ∂ u + ∂ x ∂ v ∂ y ∂ w ∂ z ∂ u − ∂ x ∂ u ∂ y ∂ w ∂ z ∂ v + ∂ x ∂ u ∂ y ∂ v ∂ z ∂ w − ∂ x ∂ v ∂ y ∂ u ∂ z ∂ w | Δ u Δ v Δ w dot product = | ∂ x ∂ u ( ∂ y ∂ v ∂ z ∂ w − ∂ y ∂ w ∂ z ∂ v ) + ∂ x ∂ v ( ∂ y ∂ w ∂ z ∂ u − ∂ y ∂ u ∂ z ∂ w ) + ∂ x ∂ w ( ∂ y ∂ u ∂ z ∂ v − ∂ y ∂ v ∂ z ∂ u ) | Δ u Δ v Δ w rearrangement = | | ∂ x ∂ u ∂ x ∂ v ∂ x ∂ w ∂ y ∂ u ∂ y ∂ v ∂ y ∂ w ∂ z ∂ u ∂ z ∂ v ∂ z ∂ w | | Δ u Δ v Δ w cross product {\displaystyle {\begin{aligned}\Delta V_{1}=|(\mathbf {a} \times \mathbf {b} )\ \cdot \ \mathbf {c} |&=|(\Delta u\ \mathbf {r} _{u})\times (\Delta v\ \mathbf {r} _{v})\ \cdot \ \Delta w\ \mathbf {r} _{w}|\\&=|\mathbf {r} _{u}\times \mathbf {r} _{v}\ \cdot \ \mathbf {r} _{w}|\Delta u\Delta v\Delta w\\&={\begin{vmatrix}{\begin{vmatrix}\mathbf {i} &\mathbf {j} &\mathbf {k} \\{\frac {\partial x}{\partial u}}&{\frac {\partial y}{\partial u}}&{\frac {\partial z}{\partial u}}\\{\frac {\partial x}{\partial v}}&{\frac {\partial y}{\partial v}}&{\frac {\partial z}{\partial v}}\\\end{vmatrix}}\ \cdot \ {\begin{pmatrix}{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial w}}\\\end{pmatrix}}\end{vmatrix}}\Delta u\Delta v\Delta w&\quad {\text{cross product}}\\&={\begin{vmatrix}{\begin{pmatrix}{\frac {\partial y}{\partial u}}{\frac {\partial z}{\partial v}}-{\frac {\partial z}{\partial u}}{\frac {\partial y}{\partial v}}\\{\frac {\partial z}{\partial u}}{\frac {\partial x}{\partial v}}-{\frac {\partial x}{\partial u}}{\frac {\partial z}{\partial v}}\\{\frac {\partial x}{\partial u}}{\frac {\partial y}{\partial v}}-{\frac {\partial y}{\partial u}}{\frac {\partial x}{\partial v}}\\\end{pmatrix}}\ \cdot \ {\begin{pmatrix}{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial w}}\\\end{pmatrix}}\end{vmatrix}}\Delta u\Delta v\Delta w\\&=\left|{\frac {\partial x}{\partial w}}{\frac {\partial y}{\partial u}}{\frac {\partial z}{\partial v}}-{\frac {\partial x}{\partial w}}{\frac {\partial y}{\partial v}}{\frac {\partial z}{\partial u}}+{\frac {\partial x}{\partial v}}{\frac {\partial y}{\partial w}}{\frac {\partial z}{\partial u}}-{\frac {\partial x}{\partial u}}{\frac {\partial y}{\partial w}}{\frac {\partial z}{\partial v}}+{\frac {\partial x}{\partial u}}{\frac {\partial y}{\partial v}}{\frac {\partial z}{\partial w}}-{\frac {\partial x}{\partial v}}{\frac {\partial y}{\partial u}}{\frac {\partial z}{\partial w}}\right|\Delta u\Delta v\Delta w&\quad {\text{dot product}}\\&=\left|{\frac {\partial x}{\partial u}}{\bigg (}{\frac {\partial y}{\partial v}}{\frac {\partial z}{\partial w}}-{\frac {\partial y}{\partial w}}{\frac {\partial z}{\partial v}}{\bigg )}+{\frac {\partial x}{\partial v}}{\bigg (}{\frac {\partial y}{\partial w}}{\frac {\partial z}{\partial u}}-{\frac {\partial y}{\partial u}}{\frac {\partial z}{\partial w}}{\bigg )}+{\frac {\partial x}{\partial w}}{\bigg (}{\frac {\partial y}{\partial u}}{\frac {\partial z}{\partial v}}-{\frac {\partial y}{\partial v}}{\frac {\partial z}{\partial u}}{\bigg )}\right|\Delta u\Delta v\Delta w&\quad {\text{rearrangement}}\\&={\begin{vmatrix}{\begin{vmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}&{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}&{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial u}}&{\frac {\partial z}{\partial v}}&{\frac {\partial z}{\partial w}}\\\end{vmatrix}}\end{vmatrix}}\Delta u\Delta v\Delta w&\quad {\text{cross product}}\\\end{aligned}}}
因此, Δ V 1 Δ V 2 = | | ∂ x ∂ u ∂ x ∂ v ∂ x ∂ w ∂ y ∂ u ∂ y ∂ v ∂ y ∂ w ∂ z ∂ u ∂ z ∂ v ∂ z ∂ w | | Δ u Δ v Δ w Δ u Δ v Δ w = | | ∂ x ∂ u ∂ x ∂ v ∂ x ∂ w ∂ y ∂ u ∂ y ∂ v ∂ y ∂ w ∂ z ∂ u ∂ z ∂ v ∂ z ∂ w | | {\displaystyle {\frac {\Delta V_{1}}{\Delta V_{2}}}={\frac {{\begin{vmatrix}{\begin{vmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}&{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}&{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial u}}&{\frac {\partial z}{\partial v}}&{\frac {\partial z}{\partial w}}\\\end{vmatrix}}\end{vmatrix}}\Delta u\Delta v\Delta w}{\Delta u\Delta v\Delta w}}={\begin{vmatrix}{\begin{vmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}&{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}&{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial u}}&{\frac {\partial z}{\partial v}}&{\frac {\partial z}{\partial w}}\\\end{vmatrix}}\end{vmatrix}}} .
定義。 (三元變數的雅可比矩陣)由函式 x = x ( u , v , w ) , y = y ( u , v , w ) {\displaystyle x=x(u,v,w),y=y(u,v,w)} 和 z = z ( u , v , w ) {\displaystyle z=z(u,v,w)} 給出的變換 T {\displaystyle T} 的雅可比矩陣,其偏導數存在且連續,為 ∂ ( x , y , z ) ∂ ( u , v , w ) = | ∂ x ∂ u ∂ x ∂ v ∂ x ∂ w ∂ y ∂ u ∂ y ∂ v ∂ y ∂ w ∂ z ∂ u ∂ z ∂ v ∂ z ∂ w | {\displaystyle {\frac {\partial (x,y,z)}{\partial (u,v,w)}}={\begin{vmatrix}{\frac {\partial x}{\partial u}}&{\frac {\partial x}{\partial v}}&{\frac {\partial x}{\partial w}}\\{\frac {\partial y}{\partial u}}&{\frac {\partial y}{\partial v}}&{\frac {\partial y}{\partial w}}\\{\frac {\partial z}{\partial u}}&{\frac {\partial z}{\partial v}}&{\frac {\partial z}{\partial w}}\\\end{vmatrix}}}
新增絕對值是為了防止出現負體積。
∭ R f ( x , y , z ) d V ≈ ∑ i = 1 m ∑ j = 1 n ∑ k = 1 p f ( x i , y j , z k ) Δ V ≈ ∑ i = 1 m ∑ j = 1 n ∑ k = 1 p f ( x ( u i , v j , w k ) , y ( u i , v j , w k ) , z ( u i , v j , w k ) ) Δ V 2 Since Δ V 2 ≈ | ∂ ( x , y , z ) ∂ ( u , v , w ) | Δ u Δ v Δ w ∑ i = 1 m ∑ j = 1 n ∑ k = 1 p f ( x ( u i , v j , w k ) , y ( u i , v j , w k ) , z ( u i , v j , w k ) ) Δ V 2 ≈ ∑ i = 1 m ∑ j = 1 n ∑ k = 1 p f ( x ( u i , v j , w k ) , y ( u i , v j , w k ) , z ( u i , v j , w k ) ) | ∂ ( x , y , z ) ∂ ( u , v , w ) | Δ u Δ v Δ w ≈ ∭ S f ( x ( u , v , w ) , y ( u , v , w ) , z ( u , v , w ) ) | ∂ ( x , y , z ) ∂ ( u , v , w ) | d u d v d w {\displaystyle {\begin{aligned}\iiint _{R}f(x,y,z)dV&\approx \sum _{i=1}^{m}\sum _{j=1}^{n}\sum _{k=1}^{p}f(x_{i},y_{j},z_{k})\Delta V\\&\approx \sum _{i=1}^{m}\sum _{j=1}^{n}\sum _{k=1}^{p}f(x(u_{i},v_{j},w_{k}),y(u_{i},v_{j},w_{k}),z(u_{i},v_{j},w_{k}))\Delta V_{2}\\{\text{Since }}&\Delta V_{2}\approx \left|{\frac {\partial (x,y,z)}{\partial (u,v,w)}}\right|\Delta u\Delta v\Delta w\\\sum _{i=1}^{m}\sum _{j=1}^{n}\sum _{k=1}^{p}f(x(u_{i},v_{j},w_{k}),y(u_{i},v_{j},w_{k}),z(u_{i},v_{j},w_{k}))\Delta V_{2}&\approx \sum _{i=1}^{m}\sum _{j=1}^{n}\sum _{k=1}^{p}f(x(u_{i},v_{j},w_{k}),y(u_{i},v_{j},w_{k}),z(u_{i},v_{j},w_{k}))\ \left|{\frac {\partial (x,y,z)}{\partial (u,v,w)}}\right|\Delta u\Delta v\Delta w\\&\approx \iiint _{S}f(x(u,v,w),y(u,v,w),z(u,v,w))\ \left|{\frac {\partial (x,y,z)}{\partial (u,v,w)}}\right|\ du\ dv\ dw\\\end{aligned}}}
然後,我們有以下定理,它類似於二重積分的定理。再次提醒,以上解釋並非 該定理的證明。
定理。 (三重積分變數替換) 假設 T {\displaystyle T} 是一個 C 1 {\displaystyle C^{1}} 變換,其雅可比行列式不為零,並將 u v w {\displaystyle uvw} 空間中的區域 S {\displaystyle S} 單射對映到 x y z {\displaystyle xyz} 空間中的區域 R {\displaystyle R} ,透過變數替換 x = x ( u , v , w ) , y = y ( u , v , w ) {\displaystyle x=x(u,v,w),y=y(u,v,w)} 和 z = z ( u , v , w ) {\displaystyle z=z(u,v,w)} 。假設 f {\displaystyle f} 在 R {\displaystyle R} 上連續,我們有 ∭ R f ( x , y , z ) d x d y d z = ∭ S f ( x ( u , v , w ) , y ( u , v , w ) , z ( u , v , w ) ) | ∂ ( x , y , z ) ∂ ( u , v , w ) | d u d v d w {\displaystyle \iiint _{R}f(x,y,z)\,dx\,dy\,dz=\iiint _{S}f(x(u,v,w),y(u,v,w),z(u,v,w))\left|{\frac {\partial (x,y,z)}{\partial (u,v,w)}}\right|\,du\,dv\,dw}
備註.
d x d y d z {\displaystyle dx\,dy\,dz} 與 d V {\displaystyle dV} 意思相同。
如果我們改變一些記號,我們可以得到
∭ S f ( u ( x , y , z ) , v ( x , y , z ) , w ( x , y , z ) ) | ∂ ( u , v , w ) ∂ ( x , y , z ) | d x d y d z = ∭ R f ( u , v , w ) d u d v d w . {\displaystyle \iiint _{S}f(u(x,y,z),v(x,y,z),w(x,y,z))\left|{\frac {\partial (u,v,w)}{\partial (x,y,z)}}\right|\,dx\,dy\,dz=\iiint _{R}f(u,v,w)\,du\,dv\,dw.} ( T {\displaystyle T} 在這種情況下將 x y z {\displaystyle xyz} 空間中的區域 S {\displaystyle S} 對映到 u v w {\displaystyle uvw} 空間中的區域 R {\displaystyle R} 。在這種情況下。) 這可能是一種在某些情況下更方便使用的形式。
現在我們瞭解了雅可比矩陣的用途和推導,是時候應用這些新知識來解決一些例子了。前兩個例子包括將座標系從笛卡爾座標系變換到極座標系,以及將笛卡爾座標系變換到球座標系。
有時,我們可能將積分割槽域變換到其他座標系中的另一個區域。這可以簡化積分的計算,特別是在笛卡爾座標系中的區域與圓形相關時,例如球體、圓錐體、圓形等。
讓我們從將座標系從笛卡爾座標系變換到極座標系開始。
命題。 (將笛卡爾座標系轉換為極座標系進行二重積分)令 f ( x , y ) {\displaystyle f(x,y)} 是一個用 笛卡爾座標 定義的連續函式,並令 g ( r , θ ) = f ( r cos θ , r sin θ ) {\displaystyle g(r,\theta )=f(r\cos \theta ,r\sin \theta )} 是用 極座標 表示的相同 函式。假設極座標系中的區域 S {\displaystyle S} 一一對映到笛卡爾座標系中的區域 R {\displaystyle R} 。那麼, ∬ R f ( x , y ) d x d y = ∬ S g ( r , θ ) r d r d θ . {\displaystyle \iint _{R}f(x,y)\,dx\,dy=\iint _{S}g(r,\theta ){\color {green}{r}}\,dr\,d\theta .}
證明。 如果我們從笛卡爾座標系轉換為極座標系,則有關係 x = r cos θ and y = r sin θ . {\displaystyle x=r\cos \theta {\text{ and }}y=r\sin \theta .} 因此,雅可比行列式為 ∂ ( x , y ) ∂ ( r , θ ) = | ∂ x ∂ r ∂ x ∂ θ ∂ y ∂ r ∂ y ∂ θ | = | cos θ − r sin θ sin θ r cos θ | = r ( cos 2 θ + sin 2 θ ) = r . {\displaystyle {\frac {\partial (x,y)}{\partial (r,\theta )}}={\begin{vmatrix}{\frac {\partial x}{\partial r}}&{\frac {\partial x}{\partial \theta }}\\{\frac {\partial y}{\partial r}}&{\frac {\partial y}{\partial \theta }}\end{vmatrix}}={\begin{vmatrix}\cos \theta &-r\sin \theta \\\sin \theta &r\cos \theta \end{vmatrix}}=r\left(\cos ^{2}\theta +\sin ^{2}\theta \right)=r.} 根據二重積分變數替換定理, ∬ R f ( x , y ) d x d y = ∬ S f ( r cos θ , r sin θ ) | ∂ ( x , y ) ∂ ( r , θ ) | d r d θ = ∬ S g ( r , θ ) r d r d θ . {\displaystyle \iint _{R}f(x,y)\,dx\,dy=\iint _{S}f(r\cos \theta ,r\sin \theta )\left|{\frac {\partial (x,y)}{\partial (r,\theta )}}\right|\,dr\,d\theta =\iint _{S}g(r,\theta )r\,dr\,d\theta .} ◻ {\displaystyle \Box }
命題. (將笛卡爾座標系轉換為柱座標系進行三重積分)令 f ( x , y , z ) {\displaystyle f(x,y,z)} 是一個用 笛卡爾座標 定義的連續函式,令 g ( r , θ , z ) = f ( r cos θ , r sin θ , z ) {\displaystyle g(r,\theta ,z)=f(r\cos \theta ,r\sin \theta ,z)} 是用 柱座標 表示的 相同 函式。假設柱座標系中的區域 S {\displaystyle S} 單射對映到笛卡爾座標系中的區域 R {\displaystyle R} 。那麼, ∭ R f ( x , y , z ) d x d y d z = ∭ S g ( r , θ , z ) r d r d θ d z . {\displaystyle \iiint _{R}f(x,y,z)\,dx\,dy\,dz=\iiint _{S}g(r,\theta ,z){\color {green}{r}}\,dr\,d\theta \,dz.}
命題. (將笛卡爾座標系轉換為球座標系進行三重積分)令 f ( x , y , z ) {\displaystyle f(x,y,z)} 是一個用 笛卡爾座標 定義的連續函式,令 g ( ρ , ϕ , θ ) = f ( ρ sin ϕ cos θ , ρ sin ϕ sin θ , ρ cos ϕ ) {\displaystyle g(\rho ,\phi ,\theta )=f(\rho \sin \phi \cos \theta ,\rho \sin \phi \sin \theta ,\rho \cos \phi )} 是用 球座標 表示的 相同 函式。假設球座標系中的區域 S {\displaystyle S} 單射對映到笛卡爾座標系中的區域 R {\displaystyle R} 。那麼, ∭ R f ( x , y , z ) d x d y d z = ∭ S g ( ρ , ϕ , θ ) ρ 2 sin ϕ d ρ d ϕ d θ . {\displaystyle \iiint _{R}f(x,y,z)\,dx\,dy\,dz=\iiint _{S}g(\rho ,\phi ,\theta ){\color {green}{\rho ^{2}\sin \phi }}\,d\rho \,d\phi \,d\theta .}
證明。
薩魯斯法則的示意圖。紅色箭頭對應正項,藍色箭頭對應負項。
If we change from Cartesian coordinates to spherical coordinates, we have the relationships x = ρ sin ϕ cos θ , y = ρ sin ϕ sin θ and z = ρ cos ϕ . {\displaystyle x=\rho \sin \phi \cos \theta ,\,y=\rho \sin \phi \sin \theta \;{\text{and}}\;z=\rho \cos \phi .} Thus, the Jacobian is ∂ ( x , y , z ) ∂ ( ρ , ϕ , θ ) = | ∂ x ∂ ρ ∂ x ∂ ϕ ∂ x ∂ θ ∂ y ∂ ρ ∂ y ∂ ϕ ∂ y ∂ θ ∂ z ∂ ρ ∂ z ∂ ϕ ∂ z ∂ θ | = | sin ϕ cos θ ρ cos ϕ cos θ − ρ sin ϕ sin θ sin ϕ sin θ ρ cos ϕ sin θ ρ sin ϕ sin θ cos ϕ − ρ sin ϕ 0 | = 0 + ρ 2 sin ϕ cos 2 ϕ cos 2 θ + ρ 2 sin 3 ϕ sin 2 θ − ( − ρ 2 sin ϕ cos 2 ϕ sin 2 θ ) − ( − ρ 2 sin 3 ϕ cos 2 θ ) − 0 by Rule of Sarrus = ρ 2 sin ϕ cos 2 ϕ ( sin 2 θ + cos 2 θ ⏟ 1 ) + ρ 2 sin 3 ϕ ⏟ sin ϕ sin 2 ϕ ( sin 2 θ + cos 2 θ ⏟ 1 ) = ρ 2 sin ϕ ( cos 2 ϕ + sin 2 ϕ ⏟ 1 ) = ρ 2 sin ϕ . {\displaystyle {\begin{aligned}{\frac {\partial (x,y,z)}{\partial (\rho ,\phi ,\theta )}}&={\begin{vmatrix}{\frac {\partial x}{\partial \rho }}&{\frac {\partial x}{\partial \phi }}&{\frac {\partial x}{\partial \theta }}\\{\frac {\partial y}{\partial \rho }}&{\frac {\partial y}{\partial \phi }}&{\frac {\partial y}{\partial \theta }}\\{\frac {\partial z}{\partial \rho }}&{\frac {\partial z}{\partial \phi }}&{\frac {\partial z}{\partial \theta }}\\\end{vmatrix}}\\&={\begin{vmatrix}\sin \phi \cos \theta &\rho \cos \phi \cos \theta &-\rho \sin \phi \sin \theta \\\sin \phi \sin \theta &\rho \cos \phi \sin \theta &\rho \sin \phi \sin \theta \\\cos \phi &-\rho \sin \phi &0\end{vmatrix}}\\&=0{\color {purple}+\rho ^{2}\sin \phi \cos ^{2}\phi \cos ^{2}\theta }{\color {brown}+\rho ^{2}\sin ^{3}\phi \sin ^{2}\theta }{\color {purple}-(-\rho ^{2}\sin \phi \cos ^{2}\phi \sin ^{2}\theta )}{\color {brown}-(-\rho ^{2}\sin ^{3}\phi \cos ^{2}\theta )}-0\qquad {\text{by Rule of Sarrus}}\\&={\color {purple}\rho ^{2}\sin \phi \cos ^{2}\phi (\underbrace {\sin ^{2}\theta +\cos ^{2}\theta } _{1})}{\color {brown}+\rho ^{2}\underbrace {\sin ^{3}\phi } _{\sin \phi \sin ^{2}\phi }(\underbrace {\sin ^{2}\theta +\cos ^{2}\theta } _{1})}\\&=\rho ^{2}\sin \phi \left(\underbrace {{\color {purple}\cos ^{2}\phi }{\color {brown}+\sin ^{2}\phi }} _{1}\right)\\&=\rho ^{2}\sin \phi .\end{aligned}}} By the theorem about change of variables for triple integration, ∭ R f ( x , y , z ) d x d y d z = ∭ S f ( ρ sin ϕ cos θ , ρ sin ϕ sin θ , ρ cos ϕ ) | ∂ ( x , y , z ) ∂ ( ρ , ϕ , θ ) | d ρ d ϕ d θ = ∭ S g ( ρ , ϕ , θ ) ρ 2 ⏟ ≥ 0 sin ϕ ⏞ ≥ 0 since 0 ≤ ϕ ≤ π d ρ d ϕ d θ . {\displaystyle \iiint _{R}f(x,y,z)\,dx\,dy\,dz=\iiint _{S}f(\rho \sin \phi \cos \theta ,\rho \sin \phi \sin \theta ,\rho \cos \phi )\left|{\frac {\partial (x,y,z)}{\partial (\rho ,\phi ,\theta )}}\right|\,d\rho \,d\phi \,d\theta =\iiint _{S}g(\rho ,\phi ,\theta )\underbrace {\rho ^{2}} _{\geq 0}\overbrace {\sin \phi } ^{\geq 0\;{\text{since}}\;0\leq \phi \leq \pi }\,d\rho \,d\phi \,d\theta .} ◻ {\displaystyle \Box }
證明。
如果我們從笛卡爾座標系變換到柱座標系 ,則有如下關係 x = r cos θ , y = r sin θ and z = z . {\displaystyle x=r\cos \theta ,\,y=r\sin \theta \;{\text{and}}\;{\color {green}{z=z}}.} 因此,雅可比行列式為 ∂ ( x , y , z ) ∂ ( r , θ , z ) = | ∂ x ∂ r ∂ x ∂ θ ∂ x ∂ z ∂ y ∂ r ∂ y ∂ θ ∂ y ∂ z ∂ z ∂ r ∂ z ∂ θ ∂ z ∂ z | = | cos θ − r sin θ 0 sin θ r cos θ 0 0 0 1 | = 0 − 0 + | cos θ − r sin θ sin θ r cos θ | ⏟ by cofactor expansion along 3rd row = r . {\displaystyle {\frac {\partial (x,y,{\color {green}z})}{\partial (r,\theta ,{\color {green}z})}}={\begin{vmatrix}{\frac {\partial x}{\partial r}}&{\frac {\partial x}{\partial \theta }}&{\color {green}{\frac {\partial x}{\partial z}}}\\{\frac {\partial y}{\partial r}}&{\frac {\partial y}{\partial \theta }}&{\color {green}{\frac {\partial y}{\partial z}}}\\{\color {green}{\frac {\partial z}{\partial r}}}&{\color {green}{\frac {\partial z}{\partial \theta }}}&{\color {green}{\frac {\partial z}{\partial z}}}\end{vmatrix}}={\begin{vmatrix}\cos \theta &-r\sin \theta &{\color {green}{0}}\\\sin \theta &r\cos \theta &{\color {green}{0}}\\{\color {green}0}&{\color {green}0}&{\color {green}1}\end{vmatrix}}=\underbrace {0-0+{\begin{vmatrix}\cos \theta &-r\sin \theta \\\sin \theta &r\cos \theta \end{vmatrix}}} _{\text{by cofactor expansion along 3rd row}}=r.} 根據多元積分變數變換定理,對於三重 積分,有 ∭ R f ( x , y , z ) d x d y d z = ∭ S f ( r cos θ , r sin θ , z ) | ∂ ( x , y , z ) ∂ ( r , θ , z ) | d r d θ d z = ∭ S g ( r , θ , z ) r d r d θ d z . {\displaystyle \iiint _{R}f(x,y,{\color {green}z})\,dx\,dy\,{\color {green}dz}=\iiint _{S}f(r\cos \theta ,r\sin \theta ,{\color {green}z})\left|{\frac {\partial (x,y,{\color {green}z})}{\partial (r,\theta ,{\color {green}z})}}\right|\,dr\,d\theta \,{\color {green}dz}=\iiint _{S}g(r,\theta ,{\color {green}z})r\,dr\,d\theta \,{\color {green}dz}.} ◻ {\displaystyle \Box }
證明。
首先,將圓錐按提示放置。設圓錐在直角座標系和柱座標系中所包圍的區域分別為 C {\displaystyle C} 和 C ′ {\displaystyle C'} 。然後,使用柱座標系,根據關於使用柱座標系的三重積分的命題和關於三重積分給出的體積的命題,所求體積為 ∭ C 1 d V = ∭ C ′ r d r d θ d z . {\displaystyle \iiint _{C}1\,dV=\iiint _{C'}r\,dr\,d\theta \,dz.} 接下來,我們需要在區域 C ′ {\displaystyle C'} 中找到 r , θ {\displaystyle r,\theta } 和 z {\displaystyle z} 的邊界。
首先, θ {\displaystyle \theta } 的邊界是 0 ≤ θ ≤ 2 π {\displaystyle 0\leq \theta \leq 2\pi } (根據柱座標系的定義)。
Then, given a fixed θ {\displaystyle \theta } , we consider the corresponding r z {\displaystyle rz} -plane to see whether we can obtain any relationship between r {\displaystyle r} and z {\displaystyle z} . Since the region in the r z {\displaystyle rz} -plane (it is x z {\displaystyle xz} -plane in Cartesian coordinate system when θ = 0 {\displaystyle \theta =0} ) over which the integral is taken is the triangle with vertices ( 0 , 0 ) , ( 0 , h ) {\displaystyle (0,0),\,(0,h)} and ( a , 0 ) {\displaystyle (a,0)} , for which the equation of the region is z ≤ − h a r + h ⟹ z h ≤ − r a + 1 ⟹ r a + z h ≤ 1 {\displaystyle {\color {green}z}\leq {\frac {-h}{a}}{\color {green}r}+h\implies {\frac {\color {green}z}{h}}\leq -{\frac {\color {green}r}{a}}+1\implies {\frac {\color {green}r}{a}}+{\frac {\color {green}z}{h}}\leq 1} Therefore, given a fixed θ {\displaystyle \theta } r a ≤ r a + z h ⏟ ≥ 0 ≤ 1 ⟹ 0 ≤ ⏟ by definition r ≤ a , {\displaystyle {\frac {r}{a}}\leq {\frac {r}{a}}+\underbrace {\frac {z}{h}} _{\geq 0}\leq 1\implies \underbrace {0\leq } _{\text{by definition}}r\leq a,} (this shows that r {\displaystyle r} is actually independent from θ {\displaystyle \theta } .) and given fixed r , θ {\displaystyle r,\theta } , z h + r a ≤ 1 ⟹ 0 ≤ z ⏟ by cone ≤ h ( 1 − r a ) . {\displaystyle {\frac {z}{h}}+{\frac {r}{a}}\leq 1\implies \underbrace {0\leq z} _{\text{by cone}}\leq h\left(1-{\frac {r}{a}}\right).} (this shows that z {\displaystyle z} is actually independent from θ {\displaystyle \theta } .) Therefore, the desired volume is ∭ C ′ r d r d θ d z = ∫ 0 2 π ∫ 0 a ∫ 0 h ( 1 − r a ) r d z d r d θ by generalized Fubini's theorem for triple integration = ∫ 0 2 π ∫ 0 a r h ( 1 − r a ) d r d θ = ∫ 0 2 π [ h r 2 2 − h r 3 3 a ] r = 0 r = a d θ = h ∫ 0 2 π ( a 2 2 − a 3 2 3 a ⏟ a 2 / 6 ) d θ = ( 2 π ) a 2 6 = 1 3 π a 2 h {\displaystyle {\begin{aligned}\iiint _{C'}r\,dr\,d\theta \,dz&=\int _{0}^{2\pi }\int _{0}^{a}\int _{0}^{h\left(1-{\frac {r}{a}}\right)}r\,dz\,dr\,d\theta \qquad {\text{by generalized Fubini's theorem for triple integration}}\\&=\int _{0}^{2\pi }\int _{0}^{a}rh\left(1-{\frac {r}{a}}\right)\,dr\,d\theta \\&=\int _{0}^{2\pi }\left[{\frac {hr^{2}}{2}}-{\frac {hr^{3}}{3a}}\right]_{r=0}^{r=a}\,d\theta \\&=h\int _{0}^{2\pi }\left(\underbrace {{\frac {a^{2}}{2}}-{\frac {a^{{\cancel {3}}2}}{3{\cancel {a}}}}} _{a^{2}/6}\right)\,d\theta \\&={\frac {(2\pi )a^{2}}{6}}\\&={\frac {1}{3}}\pi a^{2}h\end{aligned}}} ◻ {\displaystyle \Box }
證明。
首先,將球體的中心置於原點。設 S {\displaystyle S} 和 S ′ {\displaystyle S'} 分別是在直角座標系和球座標系下由球面所包圍的區域。利用 球面 座標,根據球面座標三重積分的命題,所求體積為 ∭ S 1 d V = ∭ S ′ ρ 2 sin ϕ d ρ d ϕ d θ . {\displaystyle \iiint _{S}1\,dV=\iiint _{S'}\rho ^{2}\sin \phi \,d\rho \,d\phi \,d\theta .} 由於 ρ , ϕ , θ {\displaystyle \rho ,\phi ,\theta } 的邊界為 0 ≤ ρ ≤ r , 0 ≤ ϕ ≤ π {\displaystyle 0\leq \rho \leq r,\,0\leq \phi \leq \pi } 和 0 ≤ θ ≤ 2 π {\displaystyle 0\leq \theta \leq 2\pi } (根據球面座標的定義)在區域 S ′ {\displaystyle S'} 中,所求體積為 ∭ S ′ ρ 2 sin ϕ d ρ d ϕ d θ = ∫ 0 2 π ∫ 0 π ∫ 0 r ρ 2 sin ϕ d ρ d ϕ d θ = 1 3 ∫ 0 2 π ∫ 0 π r 3 sin ϕ d ϕ d θ = 1 3 r 3 ∫ 0 2 π − ( cos ( π ) ⏟ − 1 − cos 0 ⏟ 1 ) ⏞ 2 d θ = 2 3 r 3 ( 2 π ) = 4 3 π r 3 . {\displaystyle {\begin{aligned}\iiint _{S'}\rho ^{2}\sin \phi \,d\rho \,d\phi \,d\theta &=\int _{0}^{2\pi }\int _{0}^{\pi }\int _{0}^{r}\rho ^{2}\sin \phi \,d\rho \,d\phi \,d\theta \\&={\frac {1}{3}}\int _{0}^{2\pi }\int _{0}^{\pi }r^{3}\sin \phi \,d\phi \,d\theta \\&={\frac {1}{3}}r^{3}\int _{0}^{2\pi }\overbrace {-(\underbrace {\cos(\pi )} _{-1}-\underbrace {\cos 0} _{1})} ^{2}\,d\theta \\&={\frac {2}{3}}r^{3}(2\pi )\\&={\frac {4}{3}}\pi r^{3}.\end{aligned}}}