R 程式設計/排序
外觀
< R 程式設計
此頁面提供了建立 距離矩陣 和執行和繪製 非度量多維標度 (NMDS) 排序的基本程式碼。
在維基百科上了解更多關於 排序 的資訊。
此程式碼依賴於 Jari Oksanen 在 R 中編寫的 vegan 包。 Jari Oksanen.
首先,匯入資料並載入所需的庫
require(MASS)
require(vegan)
data(varespec) # species data
data(varechem) # environmental data
bray <- vegdist(varespec, method = "bray") # calculate a distance matrix
# There are many distance measure options for 'dist',
# discoverable by running '?dist'. Common distance measures include:
# 'bray' = Bray-Curtis
# 'canb' = Canberra
# 'euclidean' = Euclidean
NMDS 分析和繪圖
nmds <- metaMDS(varespec, k = 2,
distance = 'bray', autotransform = FALSE) # semi-black box NMDS function
ordiplot(nmds, type = "text") # Plot NMDS ordination
fit <- envfit(nmds, varechem[ ,1:4]) # Calculates environmental vectors
fit # Lists vector endpoint coordinates and r-squared values
plot(fit) # adds environmental vectors
# a linear representation of environmental variables is not always appropiate
# we could also add a smooth surface of the variable to the plot
ordisurf(nmds, varechem$N, add = TRUE, col = "darkgreen")
nmds$stress # stress value

在 metaMDS 函式中,k 是使用者定義的,它與將投影限制在 k 維時投影擬合數據框的難易程度相關。傳統觀點認為應力不應超過 10-12%。應力可以透過增加維度來降低。但是,增加維度可能會降低二維圖中前兩個 NMDS 軸的“真實性”。
我們還可以執行一個具有 3 維的 nMDS,擬合環境向量並建立一個動態圖形
nmds3d <- metaMDS(varespec, k = 3,
distance = 'bray', autotransform = FALSE) # run nmds with 3 dimensions
nmds3d$stress # stress drops
fit3d <- envfit(nmds3d, varechem[ ,1:4], choices = 1:3) # fit environmental vectors to 3d space
ordirgl(nmds3d, envfit = fit3d) # dynamic 3D graph
chem_pca <- rda(varechem, scale = TRUE) # Run PCA
biplot(chem_pca, scaling = 2) # display biplot

