三角學
- 請新增新的材料和示例,並進行更正。 所有的幫助都有用。
- 確定新材料屬於第1、2還是第3冊。 我們希望第1冊能夠在 K12 教育中使用。 第3冊,尤其是為愛好者準備的部分,可以擴充套件到研究生水平 - 這是可以的 - 只要它仍然可以被識別為三角學。
- 請檢視 關於本書,甚至修改它,以便我們有一個計劃好的結構,並使人們更容易瞭解在哪裡新增新內容。
任何幫助都受歡迎。

本書的結構仍在開發中。 標記為 * 的頁面在以“下一頁”順序閱讀書籍時目前無法訪問。 |
本書的PDF 版本並不總是與最新的更改保持同步,因此建議線上閱讀本書。 |
第1冊是微積分前的三角學。 我們假設學生對代數比較陌生,並且可以一步一步地進行代數運算。
許多頁面都有密切相關的免費/YouTube 可汗學院影片。 這是有意為之。 許多學生髮現影片演示有助於學習數學材料。
與所有三本三角學書籍一樣,我們有一個“為愛好者準備" 部分,該部分針對那些發現正常內容和速度太慢太容易,但仍需練習第1冊三角學的學生。
- 繪製 (Cos t, Sin t)
- 餘弦和正弦
- Soh-Cah-Toa
- 正弦平方加餘弦平方
- 弧度
- 單位圓
- 正弦定理
- 餘弦定理
- 已知ASA求解三角形
- 已知SAS求解三角形
- 應用示例:屋頂面積
- 應用示例:油輪進港
- * 練習:仰角和俯角
- 最難求解的三角形
三角函式作為函式
[edit | edit source]- 正弦、餘弦和正切的影像
- 相位和頻率
- 正弦平方影像
- 正弦加法公式
- 餘弦加法公式
- 二倍角公式
- * 同相和異相波
- * 拍頻
- * 應用示例:摩天輪問題
- * 應用示例:化簡角度
- * 餘割、正割、餘切
- * 餘割、正割和餘切的影像
- * 反三角函式
- * 化簡 sin(x) + b cos(x)
- * 記憶三角公式
- * 三角公式參考
- * 三角函式單位圓和圖形參考
- * 特定角度參考
- * 正切定律
- * 正多邊形
- * 正多邊形可以組成哪些鑲嵌圖案?
- * 海倫公式證明
- * 羅盤方位
- * 積化和變換
- * 紐約到東京的距離
- * 利薩如圖形
- * CORDIC 演算法
- * 奈奎斯特頻率
- * 勾股數
- * 三角函式簡史
- * 關於本書 (第一冊)
- * 可汗學院影片
- * 常見學生錯誤 (第一冊)
第二冊也屬於預備微積分三角學。但是,代數部分的進度比第一冊快。這些主題不是理解三角學在學校中通常教授方式的關鍵,因為很多以前的內容已經取消了。
第二冊的主題有一個經驗法則,即所有與三角學、應用相關的中學競賽主題的並集,以及帕爾默的經典書籍《平面與球面三角學》中討論的主題,(連結),減去第一冊中已經詳細討論的任何主題,並排除任何需要大量使用微積分或極限概念的主題(這些應該在第三冊中進行)。
例如,這些主題對對數學競賽感興趣的學生很有用。在愛好者部分,有一些主題和練習對將來會從事計算機圖形工作的學生很有用。
第二冊三角學加深了對三角形和圓形之間許多關係的理解。它還展示瞭如何解決一些更難的三角函式恆等式。
- * 三角函式的幾何定義
- * 泰勒斯定理:快速構建直角
- * 橢圓
- * 螺旋線
- * 三角學實際應用中的相關問題
- * 對於小 x,sin x、x、tan x 之間的關係
- * 已知小角的對邊
- * 已知長邊的長度
- * 正交投影
- * 雙極 (雙角) 座標
- * 用半形公式解三角形
- * 地平線的距離和傾角
- * 圓內接四邊形和托勒密定理
- * 四邊形的面積
- * 扇形或弓形的面積
- * 曲線上路面的加寬
- * 光線的反射和折射
- * 外接圓
- * 內切圓
- * 旁切圓
- * 三角形的其他中心
- * 點的冪
- * 塞瓦定理
- * 垂心
- * 旁心三角形
- * 垂足三角形
- * 九點圓
- * 布羅卡定理
- * 費馬點
- * 三角形的反射
- * 莫雷三角形
- * 維維安尼定理
- * 拿破崙定理
- * 米凱爾點
- * 菲洛線
- * 梅涅勞斯定理
- * 面積平分線
- * 樞軸定理
- * 七圓定理
- * 西姆森線
- * 特博定理
- * 三次方程的解
- * 德勞內三角剖分
本節用於我們尚不清楚如何歸類的第二卷頁面。
- * 關於本書(第二卷)
- * 可汗學院影片
- * 常見學生錯誤(第二卷)
這些是即將被淘汰的頁面。
- 三角恆等式
- * 三角學核心概念
- * 先決條件和基礎知識
- 加減定理
- 關於加法公式的更多內容 - 部分內容可能需要提取到第一卷。
- * 問題集
- * 度分秒
- * 沒有正弦函式
- * 關於直線的反射 (可能可以融入矩陣的介紹/複習 - 第 3 冊引言章節)
第 3 冊使用並建立在微積分、複數、矩陣的基礎上。我們假設學生對代數比較熟練。我們經常會將簡單的步驟合併在一起,以保持證明/解釋簡短。第 1 冊是先決條件,但第 2 冊不是。
有很多與計算相關的主題,特別是在“愛好者”部分。
- 一些初步結果
- 正弦函式的導數
- 餘弦函式的導數
- 正切函式的導數
- 反函式的導數
- ex 的冪級數
- 餘弦函式和正弦函式的冪級數
- 餘弦函式和正弦函式的數值計算
- eiπ
- 雙曲餘弦、雙曲正弦和雙曲正切
- 複變函式
本節內容用於第三冊中我們尚不確定其歸屬的頁面。
Lmov, Alsocal, Robinson0120,
Evil saltine, JEdwards, llg, Programmermatt, Douglas W. Mitchell
此外,感謝許多維基百科數學文章的貢獻者,其中一些內容來自他們的貢獻。